Skip to main content

Abstract

GTPases (GTP hydrolases, GTP-binding proteins) are enzymes that direct various cellular functions, including signal transduction, protein biosynthesis, cell division, and transport of vesicles. They are molecular switches that cycle between two conformational states (Fig. 1): the inactive guanosine-5′-diphosphate (GDP)-bound state and the active guanosine-5′-triphosphate (GTP)-bound-state. In the GTP-bound ‘on’ state GTPases bind effector proteins and generate cellular responses, until GTP hydrolysis returns the switch to the ‘off’ state. GTP binding and hydrolysis occur in the highly conserved G domain. GTPases are characterized by low intrinsic GDP–GTP exchange and GTP hydrolysis rates; thus, both processes need to be controlled by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in order for the molecular switch to function at physiologically relevant rates. With few exceptions, GTPases are grouped into two main superfamilies: heterotrimeric G proteins and small GTPases. In this chapter, we will summarize the current state of knowledge about the role of these proteins in the regulation of platelet functional responses, with a particular focus on the tight functional interrelationship between the most well-studied members of the two families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Younes S, Sauty A, Mach F et al (2000) The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res 86:131–138

    Article  CAS  PubMed  Google Scholar 

  • Akbar H, Kim J, Funk K et al (2007) Genetic and pharmacologic evidence that Rac1 GTPase is involved in regulation of platelet secretion and aggregation. J Thromb Haemost 5:1747–1755

    Article  CAS  PubMed  Google Scholar 

  • Akbar H, Shang X, Perveen R et al (2011) Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation. PLoS One 6:e22117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alshbool FZ, Karim ZA, Vemana HP et al (2015) The regulator of G-protein signaling 18 regulates platelet aggregation, hemostasis and thrombosis. Biochem Biophys Res Commun 462:378–382

    Article  CAS  PubMed  Google Scholar 

  • Ambrosio AL, Boyle JA, Di Pietro SM (2012) Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system. Blood 120:4072–4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amirkhosravi A, Boulaftali Y, Robles-Carrillo L et al (2014) CalDAG-GEFI deficiency protects mice from FcgammaRIIa-mediated thrombotic thrombocytopenia induced by CD40L and beta2GPI immune complexes. J Thromb Haemost 12:2113–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andre P, Delaney SM, LaRocca T et al (2003) P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest 112:398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslan JE, Spencer AM, Loren CP et al (2011a) Characterization of the Rac guanine nucleotide exchange factor P-Rex1 in platelets. J Mol Signal 6:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslan JE, Tormoen GW, Loren CP et al (2011b) S6K1 and mTOR regulate Rac1-driven platelet activation and aggregation. Blood 118:3129–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslan JE, Baker SM, Loren CP et al (2013a) The PAK system links Rho GTPase signaling to thrombin-mediated platelet activation. Am J Physiol Cell Physiol 305:C519–C528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslan JE, Itakura A, Haley KM et al (2013b) p21 Activated kinase signaling coordinates glycoprotein receptor VI-mediated platelet aggregation, lamellipodia formation, and aggregate stability under shear. Arterioscler Thromb Vasc Biol 33:1544–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspenstrom P, Fransson A, Saras J (2004) Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377:327–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Banno F, Nojiri T, Matsumoto S et al (2012) RGS2 deficiency in mice does not affect platelet thrombus formation at sites of vascular injury. J Thromb Haemost 10:309–311

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Retzer M, Wilde JI et al (1999) Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets. Blood 94:1665–1672

    CAS  PubMed  Google Scholar 

  • Bearer EL, Prakash JM, Li Z (2002) Actin dynamics in platelets. Int Rev Cytol 217:137–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck S, Fotinos A, Lang F et al (2013) Isoform-specific roles of the GTPase activating protein nadrin in cytoskeletal reorganization of platelets. Cell Signal 25:236–246

    Article  CAS  PubMed  Google Scholar 

  • Beck F, Geiger J, Gambaryan S et al (2014) Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways. Blood 123:e1–e10

    Article  CAS  PubMed  Google Scholar 

  • Benka ML, Lee M, Wang GR et al (1995) The thrombin receptor in human platelets is coupled to a GTP binding protein of the G alpha q family. FEBS Lett 363:49–52

    Article  CAS  PubMed  Google Scholar 

  • Berger G, Quarck R, Tenza D et al (1994) Ultrastructural localization of the small GTP-binding protein Rap1 in human platelets and megakaryocytes. Br J Haematol 88:372–382

    Article  CAS  PubMed  Google Scholar 

  • Bernardi B, Guidetti GF, Campus F et al (2006) The small GTPase Rap1b regulates the cross talk between platelet integrin alpha2beta1 and integrin alphaIIbbeta3. Blood 107:2728–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berstein G, Blank JL, Jhon DY et al (1992) Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70:411–418

    Article  CAS  PubMed  Google Scholar 

  • Bertoni A, Tadokoro S, Eto K et al (2002) Relationships between Rap1b, affinity modulation of integrin alpha IIbbeta 3, and the actin cytoskeleton. J Biol Chem 277:25715–25721

    Article  CAS  PubMed  Google Scholar 

  • Bleijerveld OB, van Holten TC, Preisinger C et al (2013) Targeted phosphotyrosine profiling of glycoprotein VI signaling implicates oligophrenin-1 in platelet filopodia formation. Arterioscler Thromb Vasc Biol 33:1538–1543

    Article  CAS  PubMed  Google Scholar 

  • Bodor ET, Waldo GL, Blaesius R et al (2004) Delineation of ligand binding and receptor signaling activities of purified P2Y receptors reconstituted with heterotrimeric G proteins. Purinergic Signal 1:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JL, de Bruyn K, Enserink J et al (2003) The role of Rap1 in integrin-mediated cell adhesion. Biochem Soc Trans 31:83–86

    Article  CAS  PubMed  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  CAS  PubMed  Google Scholar 

  • Broos K, Feys HB, De Meyer SF et al (2011) Platelets at work in primary hemostasis. Blood Rev 25:155–167

    Article  CAS  PubMed  Google Scholar 

  • Burkhart JM, Vaudel M, Gambaryan S et al (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120:e73–e82

    Article  CAS  PubMed  Google Scholar 

  • Calaminus SD, Auger JM, McCarty OJ et al (2007a) MyosinIIa contractility is required for maintenance of platelet structure during spreading on collagen and contributes to thrombus stability. J Thromb Haemost 5:2136–2145

    Article  CAS  PubMed  Google Scholar 

  • Calaminus SD, McCarty OJ, Auger JM et al (2007b) A major role for Scar/WAVE-1 downstream of GPVI in platelets. J Thromb Haemost 5:535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calaminus SD, Thomas S, McCarty OJ et al (2008) Identification of a novel, actin-rich structure, the actin nodule, in the early stages of platelet spreading. J Thromb Haemost 6:1944–1952

    Article  CAS  PubMed  Google Scholar 

  • Canault M, Ghalloussi D, Grosdidier C et al (2014) Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J Exp Med 211:1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canobbio I, Trionfini P, Guidetti GF et al (2008) Targeting of the small GTPase Rap2b, but not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176 and Cys177 and is required for efficient protein activation in human platelets. Cell Signal 20:1662–1670

    Article  CAS  PubMed  Google Scholar 

  • Caron E (2003) Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci 116:435–440

    Article  CAS  PubMed  Google Scholar 

  • Caron E, Self AJ, Hall A (2000) The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 10:974–978

    Article  CAS  PubMed  Google Scholar 

  • Chatah NE, Abrams CS (2001) G-protein-coupled receptor activation induces the membrane translocation and activation of phosphatidylinositol-4-phosphate 5-kinase I alpha by a Rac- and Rho-dependent pathway. J Biol Chem 276:34059–34065

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Rath D, Gawaz M (2015) Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochem Soc Trans 43:720–726

    Article  CAS  PubMed  Google Scholar 

  • Chavrier P, Parton RG, Hauri HP et al (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Austin SC, Rocca B et al (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 296:539–541

    Article  CAS  PubMed  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  CAS  PubMed  Google Scholar 

  • Choi W, Karim ZA, Whiteheart SW (2006) Arf6 plays an early role in platelet activation by collagen and convulxin. Blood 107:3145–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM et al (2005) Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest 115:680–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cifuni SM, Wagner DD, Bergmeier W (2008) CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood 112:1696–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemetson KJ, Clemetson JM, Proudfoot AE et al (2000) Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood 96:4046–4054

    CAS  PubMed  Google Scholar 

  • Cozier GE, Lockyer PJ, Reynolds JS et al (2000) GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J Biol Chem 275:28261–28268

    CAS  PubMed  Google Scholar 

  • Crittenden JR, Bergmeier W, Zhang Y et al (2004) CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 10:982–986

    Article  CAS  PubMed  Google Scholar 

  • Cullen PJ, Hsuan JJ, Truong O et al (1995) Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 376:527–530

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta SK, Le A, Haudek SB et al (2013) Rho associated coiled-coil kinase-1 regulates collagen-induced phosphatidylserine exposure in platelets. PLoS One 8:e84649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dash D, Aepfelbacher M, Siess W (1995) Integrin alpha IIb beta 3-mediated translocation of CDC42Hs to the cytoskeleton in stimulated human platelets. J Biol Chem 270:17321–17326

    Article  CAS  PubMed  Google Scholar 

  • Delaney MK, Liu J, Zheng Y et al (2012) The role of Rac1 in glycoprotein Ib-IX-mediated signal transduction and integrin activation. Arterioscler Thromb Vasc Biol 32:2761–2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delesque-Touchard N, Pendaries C, Volle-Challier C et al (2014) Regulator of G-protein signaling 18 controls both platelet generation and function. PLoS One 9:e113215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Detter JC, Zhang Q, Mules EH et al (2000) Rab geranylgeranyl transferase alpha mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis. Proc Natl Acad Sci U S A 97:4144–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devanathan V, Hagedorn I, Kohler D et al (2015) Platelet Gi protein Galphai2 is an essential mediator of thrombo-inflammatory organ damage in mice. Proc Natl Acad Sci U S A 112:6491–6496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutting S, Heidenreich J, Cherpokova D et al (2015) Critical off-target effects of the widely used Rac1 inhibitors NSC23766 and EHT1864 in mouse platelets. J Thromb Haemost 13:827–838

    Article  CAS  PubMed  Google Scholar 

  • Egot M, Kauskot A, Lasne D et al (2013) Biphasic myosin II light chain activation during clot retraction. Thromb Haemost 110:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Ellis S, Mellor H (2000) The novel Rho-family GTPase rif regulates coordinated actin-based membrane rearrangements. Curr Biol 10:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Elvers M, Beck S, Fotinos A et al (2012) The GRAF family member oligophrenin1 is a RhoGAP with BAR domain and regulates Rho GTPases in platelets. Cardiovasc Res 94:526–536

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S (2004) Cdc42—the centre of polarity. J Cell Sci 117:1291–1300

    Article  CAS  PubMed  Google Scholar 

  • Eto K, Murphy R, Kerrigan SW et al (2002) Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc Natl Acad Sci U S A 99:12819–12824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanko DS, Thiyagarajan MM, Siderovski DP et al (2001) Gbeta gamma isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq. J Biol Chem 276:23945–23953

    Article  CAS  PubMed  Google Scholar 

  • Faix J, Grosse R (2006) Staying in shape with formins. Dev Cell 10(6):693–706

    Article  CAS  PubMed  Google Scholar 

  • Farrens DL, Altenbach C, Yang K et al (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770

    Article  CAS  PubMed  Google Scholar 

  • Fitch-Tewfik JL, Flaumenhaft R (2013) Platelet granule exocytosis: a comparison with chromaffin cells. Front Endocrinol (Lausanne) 4:77

    Google Scholar 

  • Flevaris P, Stojanovic A, Gong H et al (2007) A molecular switch that controls cell spreading and retraction. J Cell Biol 179:553–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flevaris P, Li Z, Zhang G et al (2009) Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 113:893–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster CJ, Prosser DM, Agans JM et al (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 107:1591–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotinos A, Klier M, Gowert NS et al (2015) Loss of oligophrenin1 leads to uncontrolled Rho activation and increased thrombus formation in mice. J Thromb Haemost 13:619–630

    Article  CAS  PubMed  Google Scholar 

  • Franke B, van Triest M, de Bruijn KM et al (2000) Sequential regulation of the small GTPase Rap1 in human platelets. Mol Cell Biol 20:779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freson K, Izzi B, Jaeken J et al (2008) Compound heterozygous mutations in the GNAS gene of a boy with morbid obesity, thyroid-stimulating hormone resistance, pseudohypoparathyroidism, and a prothrombotic state. J Clin Endocrinol Metab 93:4844–4849

    Article  CAS  PubMed  Google Scholar 

  • Gabbeta J, Yang X, Kowalska MA et al (1997) Platelet signal transduction defect with Galpha subunit dysfunction and diminished Galphaq in a patient with abnormal platelet responses. Proc Natl Acad Sci U S A 94:8750–8755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadea G, Blangy A (2014) Dock-family exchange factors in cell migration and disease. Eur J Cell Biol 93:466–477

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Smith E, Ker E et al (2012) Role of RhoA-specific guanine exchange factors in regulation of endomitosis in megakaryocytes. Dev Cell 22:573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia A, Prabhakar S, Hughan S et al (2004) Differential proteome analysis of TRAP-activated platelets: involvement of DOK-2 and phosphorylation of RGS proteins. Blood 103:2088–2095

    Article  CAS  PubMed  Google Scholar 

  • Gegenbauer K, Elia G, Blanco-Fernandez A et al (2012) Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets. Blood 119:3799–3807

    Article  CAS  PubMed  Google Scholar 

  • Getz TM, Piatt R, Petrich BG et al (2014) Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition. J Thromb Haemost 13(3):417–425

    Article  CAS  Google Scholar 

  • Gleissner CA, von Hundelshausen P, Ley K (2008) Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 28:1920–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goggs R, Harper MT, Pope RJ et al (2013a) RhoG protein regulates platelet granule secretion and thrombus formation in mice. J Biol Chem 288:34217–34229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goggs R, Savage JS, Mellor H et al (2013b) The small GTPase Rif is dispensable for platelet filopodia generation in mice. PLoS One 8:e54663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong H, Shen B, Flevaris P et al (2010) G protein subunit Galpha13 binds to integrin alphaIIbbeta3 and mediates integrin “outside-in” signaling. Science 327:340–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratacap MP, Payrastre B, Nieswandt B et al (2001) Differential regulation of Rho and Rac through heterotrimeric G-proteins and cyclic nucleotides. J Biol Chem 276:47906–47913

    CAS  PubMed  Google Scholar 

  • Greco F, Sinigaglia F, Balduini C et al (2004) Activation of the small GTPase Rap2B in agonist-stimulated human platelets. J Thromb Haemost 2:2223–2230

    Article  CAS  PubMed  Google Scholar 

  • Gresele P, Momi S, Falcinelli E (2011) Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol 72:634–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidetti GF, Bernardi B, Consonni A et al (2009) Integrin alpha2beta1 induces phosphorylation-dependent and phosphorylation-independent activation of phospholipase Cgamma2 in platelets: role of Src kinase and Rac GTPase. J Thromb Haemost 7:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Guilluy C, Swaminathan V, Garcia-Mata R et al (2011) The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol 13:722–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurbel PA, Kuliopulos A, Tantry US (2015) G-protein-coupled receptors signaling pathways in new antiplatelet drug development. Arterioscler Thromb Vasc Biol 35:500–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Lim CJ, Watanabe N et al (2006) Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol 16:1796–1806

    Article  CAS  PubMed  Google Scholar 

  • Harden TK, Waldo GL, Hicks SN et al (2011) Mechanism of activation and inactivation of Gq/phospholipase C-beta signaling nodes. Chem Rev 111:6120–6129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper MT, Poole AW (2010) Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J Thromb Haemost 8:454–462

    Article  CAS  PubMed  Google Scholar 

  • Hart MJ, Jiang X, Kozasa T et al (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280:2112–2114

    Article  CAS  PubMed  Google Scholar 

  • Hartwig JH, Bokoch GM, Carpenter CL et al (1995) Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643–653

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Ikeda T, Shirakawa R et al (2008) Biochemical characterization of the Rho GTPase-regulated actin assembly by diaphanous-related formins, mDia1 and Daam1, in platelets. J Biol Chem 283:8746–8755

    Article  CAS  PubMed  Google Scholar 

  • Higashijima T, Ferguson KM, Sternweis PC et al (1987) Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem 262:762–766

    CAS  PubMed  Google Scholar 

  • Hollopeter G, Jantzen HM, Vincent D et al (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    Article  CAS  PubMed  Google Scholar 

  • Huang JS, Dong L, Kozasa T et al (2007) Signaling through G(alpha)13 switch region I is essential for protease-activated receptor 1-mediated human platelet shape change, aggregation, and secretion. J Biol Chem 282:10210–10222

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Joshi S, Xiang B et al (2016) Arf6 controls platelet spreading and clot retraction via integrin alphaIIbbeta3 trafficking. Blood 127:1459–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung DT, Wong YH, Vu TK et al (1992) The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 267:20831–20834

    CAS  PubMed  Google Scholar 

  • Iwig JS, Vercoulen Y, Das R et al (2013) Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. Elife 2:e00813

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson SP, Schoenwaelder SM (2003) Antiplatelet therapy: in search of the ‘magic bullet’. Nat Rev Drug Discov 2:775–789

    Article  CAS  PubMed  Google Scholar 

  • Jantzen HM, Milstone DS, Gousset L et al (2001) Impaired activation of murine platelets lacking G alpha(i2). J Clin Invest 108:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci U S A 95:8070–8074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin RC, Voetsch B, Loscalzo J (2005) Endogenous mechanisms of inhibition of platelet function. Microcirculation 12:247–258

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Mao Y, Thomas D et al (2009) RhoA downstream of G(q) and G(12/13) pathways regulates protease-activated receptor-mediated dense granule release in platelets. Biochem Pharmacol 77:835–844

    Article  CAS  PubMed  Google Scholar 

  • Karim ZA, Choi W, Whiteheart SW (2008) Primary platelet signaling cascades and integrin-mediated signaling control ADP-ribosylation factor (Arf) 6-GTP levels during platelet activation and aggregation. J Biol Chem 283:11995–12003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karniguian A, Zahraoui A, Tavitian A (1993) Identification of small GTP-binding rab proteins in human platelets: thrombin-induced phosphorylation of rab3B, rab6, and rab8 proteins. Proc Natl Acad Sci U S A 90:7647–7651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katagiri K, Hattori M, Minato N et al (2000) Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol Cell Biol 20:1956–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawata M, Kikuchi A, Hoshijima M et al (1989) Phosphorylation of smg p21, a ras p21-like GTP-binding protein, by cyclic AMP-dependent protein kinase in a cell-free system and in response to prostaglandin E1 in intact human platelets. J Biol Chem 264:15688–15695

    CAS  PubMed  Google Scholar 

  • Kawato M, Shirakawa R, Kondo H et al (2008) Regulation of platelet dense granule secretion by the Ral GTPase-exocyst pathway. J Biol Chem 283:166–174

    Article  CAS  PubMed  Google Scholar 

  • Kelleher KL, Matthaei KI, Hendry IA (2001) Targeted disruption of the mouse Gz-alpha gene: a role for Gz in platelet function? Thromb Haemost 85:529–532

    CAS  PubMed  Google Scholar 

  • Khan SM, Sleno R, Gora S et al (2013) The expanding roles of Gbetagamma subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev 65:545–577

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Jin J, Kunapuli SP (2004) Akt activation in platelets depends on Gi signaling pathways. J Biol Chem 279:4186–4195

    Article  CAS  PubMed  Google Scholar 

  • Kim SD, Sung HJ, Park SK et al (2006) The expression patterns of RGS transcripts in platelets. Platelets 17:493–497

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Cipolla L, Guidetti G et al (2013a) Distinct role of Pyk2 in mediating thromboxane generation downstream of both G12/13 and integrin alphaIIbbeta3 in platelets. J Biol Chem 288:18194–18203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Dangelmaier C, Bhavanasi D et al (2013b) RhoG protein regulates glycoprotein VI-Fc receptor gamma-chain complex-mediated platelet activation and thrombus formation. J Biol Chem 288:34230–34238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klages B, Brandt U, Simon MI et al (1999) Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 144:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozasa T, Jiang X, Hart MJ et al (1998) p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280:2109–2111

    Article  CAS  PubMed  Google Scholar 

  • Kroschewski R, Hall A, Mellman I (1999) Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol 1:8–13

    Article  CAS  PubMed  Google Scholar 

  • Kuchay SM, Wieschhaus AJ, Marinkovic M et al (2012) Targeted gene inactivation reveals a functional role of calpain-1 in platelet spreading. J Thromb Haemost 10:1120–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunert S, Meyer I, Fleischhauer S et al (2009) The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood 114:5532–5540

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Lim CJ, Puzon-McLaughlin W et al (2009) RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem 284:5119–5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng L, Kashiwagi H, Ren XD et al (1998) RhoA and the function of platelet integrin alphaIIbbeta3. Blood 91:4206–4215

    CAS  PubMed  Google Scholar 

  • Li HY, Cao K, Zheng Y (2003) Ran in the spindle checkpoint: a new function for a versatile GTPase. Trends Cell Biol 13:553–557

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Delaney MK, O’Brien KA et al (2010) Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 30:2341–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S et al (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15:702–713

    Article  CAS  PubMed  Google Scholar 

  • Lova P, Paganini S, Sinigaglia F et al (2002) A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J Biol Chem 277:12009–12015

    Article  CAS  PubMed  Google Scholar 

  • Lova P, Paganini S, Hirsch E et al (2003) A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem 278:131–138

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Cierniewska A, Signarvic R et al (2012) A newly identified complex of spinophilin and the tyrosine phosphatase, SHP-1, modulates platelet activation by regulating G protein-dependent signaling. Blood 119:1935–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maayani S, Schwarz T, Martinez R et al (2001) Activation of Gi-coupled receptors releases a tonic state of inhibited platelet aggregation. Platelets 12:94–98

    Article  CAS  PubMed  Google Scholar 

  • Machida N, Umikawa M, Takei K et al (2004) Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. J Biol Chem 279:15711–15714

    Article  CAS  PubMed  Google Scholar 

  • Maridonneau-Parini I, de Gunzburg J (1992) Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J Biol Chem 267:6396–6402

    CAS  PubMed  Google Scholar 

  • Mark BL, Jilkina O, Bhullar RP (1996) Association of Ral GTP-binding protein with human platelet dense granules. Biochem Biophys Res Commun 225:40–46

    Article  CAS  PubMed  Google Scholar 

  • Matsumura I, Nakajima K, Wakao H et al (1998) Involvement of prolonged ras activation in thrombopoietin-induced megakaryocytic differentiation of a human factor-dependent hematopoietic cell line. Mol Cell Biol 18:4282–4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarty OJ, Larson MK, Auger JM et al (2005) Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem 280:39474–39484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer I, Kunert S, Schwiebert S et al (2012) Altered microtubule equilibrium and impaired thrombus stability in mice lacking RanBP10. Blood 120:3594–3602

    Article  CAS  PubMed  Google Scholar 

  • Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147(Suppl 1):S46–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Jacques KM, Stauffer S et al (2002) ARAP1: a point of convergence for Arf and Rho signaling. Mol Cell 9:109–119

    Article  CAS  PubMed  Google Scholar 

  • Moers A, Nieswandt B, Massberg S et al (2003) G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 9:1418–1422

    Article  CAS  PubMed  Google Scholar 

  • Molina-Ortiz P, Polizzi S, Ramery E et al (2014) Rasa3 controls megakaryocyte Rap1 activation, integrin signaling and differentiation into proplatelet. PLoS Genet 10:e1004420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore SF, Hunter RW, Hers I (2014) Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets. J Thromb Haemost 12:748–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskalenko S, Henry DO, Rosse C et al (2002) The exocyst is a Ral effector complex. Nat Cell Biol 4:66–72

    Article  CAS  PubMed  Google Scholar 

  • Nagata K, Nozawa Y (1995) A low M(r) GTP-binding protein, Rap1, in human platelets: localization, translocation and phosphorylation by cyclic AMP-dependent protein kinase. Br J Haematol 90:180–186

    Article  CAS  PubMed  Google Scholar 

  • Nagy Z, Wynne K, von Kriegsheim A et al (2015) Cyclic nucleotide-dependent protein kinases target ARHGAP17 and ARHGEF6 complexes in platelets. J Biol Chem 290:29974–29983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesbitt WS, Giuliano S, Kulkarni S et al (2003) Intercellular calcium communication regulates platelet aggregation and thrombus growth. J Cell Biol 160:1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ninkovic I, White JG, Rangel-Filho A et al (2008) The role of Rab38 in platelet dense granule defects. J Thromb Haemost 6:2143–2151

    Article  CAS  PubMed  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  CAS  PubMed  Google Scholar 

  • Noe L, Di Michele M, Giets E et al (2010) Platelet Gs hypofunction and abnormal morphology resulting from a heterozygous RGS2 mutation. J Thromb Haemost 8:1594–1603

    Article  CAS  PubMed  Google Scholar 

  • Nonaka H, Takei K, Umikawa M et al (2008) MINK is a Rap2 effector for phosphorylation of the postsynaptic scaffold protein TANC1. Biochem Biophys Res Commun 377:573–578

    Article  CAS  PubMed  Google Scholar 

  • Nonne C, Lenain N, Hechler B et al (2005) Importance of platelet phospholipase Cgamma2 signaling in arterial thrombosis as a function of lesion severity. Arterioscler Thromb Vasc Biol 25:1293–1298

    Article  CAS  PubMed  Google Scholar 

  • Novak EK, Reddington M, Zhen L et al (1995) Inherited thrombocytopenia caused by reduced platelet production in mice with the gunmetal pigment gene mutation. Blood 85:1781–1789

    CAS  PubMed  Google Scholar 

  • Novak EK, Gautam R, Reddington M et al (2002) The regulation of platelet-dense granules by Rab27a in the ashen mouse, a model of Hermansky–Pudlak and Griscelli syndromes, is granule-specific and dependent on genetic background. Blood 100:128–135

    Article  CAS  PubMed  Google Scholar 

  • Novick P, Guo W (2002) Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol 12:247–249

    Article  CAS  PubMed  Google Scholar 

  • Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Offermanns S, Laugwitz KL, Spicher K et al (1994) G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci U S A 91:504–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Offermanns S, Toombs CF, Hu YH et al (1997) Defective platelet activation in G alpha(q)-deficient mice. Nature 389:183–186

    Article  CAS  PubMed  Google Scholar 

  • Ohba Y, Mochizuki N, Matsuo K et al (2000) Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade. Mol Cell Biol 20:6074–6083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmori T, Kikuchi A, Yamamoto K et al (1988) Identification of a platelet Mr 22,000 GTP-binding protein as the novel smg-21 gene product having the same putative effector domain as the ras gene products. Biochem Biophys Res Commun 157:670–676

    Article  CAS  PubMed  Google Scholar 

  • Ohmstede CA, Farrell FX, Reep BR et al (1990) RAP2B: a RAS-related GTP-binding protein from platelets. Proc Natl Acad Sci U S A 87:6527–6531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osmani N, Peglion F, Chavrier P et al (2010) Cdc42 localization and cell polarity depend on membrane traffic. J Cell Biol 191:1261–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packham MA, Rand ML, Ruben DH et al (1991) Effect of calcium concentration and inhibitors on the responses of platelets stimulated with collagen: contrast between human and rabbit platelets. Comp Biochem Physiol A Comp Physiol 99:551–557

    Article  CAS  PubMed  Google Scholar 

  • Paganini S, Guidetti GF, Catricala S et al (2006) Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie 88:285–295

    Article  CAS  PubMed  Google Scholar 

  • Pannekoek WJ, Linnemann JR, Brouwer PM et al (2013) Rap1 and Rap2 antagonistically control endothelial barrier resistance. PLoS One 8:e57903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel YM, Patel K, Rahman S et al (2003) Evidence for a role for Galphai1 in mediating weak agonist-induced platelet aggregation in human platelets: reduced Galphai1 expression and defective Gi signaling in the platelets of a patient with a chronic bleeding disorder. Blood 101:4828–4835

    Article  CAS  PubMed  Google Scholar 

  • Pearce AC, Senis YA, Billadeau DD et al (2004) Vav1 and vav3 have critical but redundant roles in mediating platelet activation by collagen. J Biol Chem 279:53955–53962

    Article  CAS  PubMed  Google Scholar 

  • Pearce AC, McCarty OJ, Calaminus SD et al (2007) Vav family proteins are required for optimal regulation of PLCgamma2 by integrin alphaIIbbeta3. Biochem J 401:753–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piechulek T, Rehlen T, Walliser C et al (2005) Isozyme-specific stimulation of phospholipase C-gamma2 by Rac GTPases. J Biol Chem 280:38923–38931

    Article  CAS  PubMed  Google Scholar 

  • Pleines I, Elvers M, Strehl A et al (2009) Rac1 is essential for phospholipase C-gamma2 activation in platelets. Pflugers Arch 457:1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Pleines I, Eckly A, Elvers M et al (2010) Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets. Blood 115:3364–3373

    Article  CAS  PubMed  Google Scholar 

  • Pleines I, Hagedorn I, Gupta S et al (2012) Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood 119:1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Pleines I, Dutting S, Cherpokova D et al (2013) Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42. Blood 122:3178–3187

    Article  CAS  PubMed  Google Scholar 

  • Pollitt AY, Insall RH (2009) WASP and SCAR/WAVE proteins: the drivers of actin assembly. J Cell Sci 122:2575–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollitt AY, Grygielska B, Leblond B et al (2010) Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac. Blood 115:2938–2946

    Article  CAS  PubMed  Google Scholar 

  • Poulter NS, Pollitt AY, Davies A et al (2015) Platelet actin nodules are podosome-like structures dependent on Wiskott–Aldrich syndrome protein and ARP2/3 complex. Nat Commun 6:7254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozgajova M, Sachs UJ, Hein L et al (2006) Reduced thrombus stability in mice lacking the alpha2A-adrenergic receptor. Blood 108:510–514

    Article  CAS  PubMed  Google Scholar 

  • Pula G, Poole AW (2008) Critical roles for the actin cytoskeleton and cdc42 in regulating platelet integrin alpha2beta1. Platelets 19:199–210

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Le Breton GC, Chen J et al (2012) Role for the guanine nucleotide exchange factor phosphatidylinositol-3,4,5-trisphosphate-dependent rac exchanger 1 in platelet secretion and aggregation. Arterioscler Thromb Vasc Biol 32:768–777

    Article  CAS  PubMed  Google Scholar 

  • Rath D, Chatterjee M, Borst O et al (2015) Platelet surface expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 is associated with clinical outcomes in patients with coronary artery disease. J Thromb Haemost 13:719–728

    Article  CAS  PubMed  Google Scholar 

  • Reedquist KA, Ross E, Koop EA et al (2000) The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J Cell Biol 148:1151–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Q, Ye S, Whiteheart SW (2008) The platelet release reaction: just when you thought platelet secretion was simple. Curr Opin Hematol 15:537–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL et al (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  CAS  PubMed  Google Scholar 

  • Rink TJ, Smith SW, Tsien RY (1982) Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett 148:21–26

    Article  CAS  PubMed  Google Scholar 

  • Riobo NA, Manning DR (2005) Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol Sci 26:146–154

    Article  CAS  PubMed  Google Scholar 

  • Rivera J, Lozano ML, Navarro-Nunez L et al (2009) Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohatgi R, Ma L, Miki H et al (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231

    Article  CAS  PubMed  Google Scholar 

  • Rowley JW, Oler AJ, Tolley ND et al (2011) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118:e101–e111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrano GR, Weiss EJ, Zheng YW et al (2001) Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413:74–78

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Suzuki-Inoue K, Inoue O et al (2008) Regulation of adaptor protein GIT1 in platelets, leading to the interaction between GIT1 and integrin alpha(IIb)beta3. Biochem Biophys Res Commun 368:157–161

    Article  CAS  PubMed  Google Scholar 

  • Schafer A, Schulz C, Eigenthaler M et al (2004) Novel role of the membrane-bound chemokine fractalkine in platelet activation and adhesion. Blood 103:407–412

    Article  PubMed  CAS  Google Scholar 

  • Schoenwaelder SM, Hughan SC, Boniface K et al (2002) RhoA sustains integrin alpha IIbbeta 3 adhesion contacts under high shear. J Biol Chem 277:14738–14746

    CAS  PubMed  Google Scholar 

  • Schultess J, Danielewski O, Smolenski AP (2005) Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets. Blood 105:3185–3192

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Delaney MK, Du X (2012) Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr Opin Cell Biol 24:600–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B, Zhao X, O'Brien KA et al (2013) A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 503:131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenker A, Goldsmith P, Unson CG et al (1991) The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. J Biol Chem 266:9309–9313

    CAS  PubMed  Google Scholar 

  • Shi DS, Smith MC, Campbell RA et al (2014) Proteasome function is required for platelet production. J Clin Invest 124:3757–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirakawa R, Yoshioka A, Horiuchi H et al (2000) Small GTPase Rab4 regulates Ca2+-induced alpha-granule secretion in platelets. J Biol Chem 275:33844–33849

    Article  CAS  PubMed  Google Scholar 

  • Shirakawa R, Higashi T, Tabuchi A et al (2004) Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J Biol Chem 279:10730–10737

    Article  CAS  PubMed  Google Scholar 

  • Shock DD, He K, Wencel-Drake JD et al (1997) Ras activation in platelets after stimulation of the thrombin receptor, thromboxane A2 receptor or protein kinase C. Biochem J 321(Pt 2):525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siess W, Winegar DA, Lapetina EG (1990) Rap1-B is phosphorylated by protein kinase A in intact human platelets. Biochem Biophys Res Commun 170:944–950

    Article  CAS  PubMed  Google Scholar 

  • Signarvic RS, Cierniewska A, Stalker TJ et al (2010) RGS/Gi2alpha interactions modulate platelet accumulation and thrombus formation at sites of vascular injury. Blood 116:6092–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon LM, Edelstein LC, Nagalla S et al (2014) Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 123:e37–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolenski A (2012) Novel roles of cAMP/cGMP-dependent signaling in platelets. J Thromb Haemost 10:167–176

    Article  CAS  PubMed  Google Scholar 

  • Smyth SS, Woulfe DS, Weitz JI et al (2009) G-protein-coupled receptors as signaling targets for antiplatelet therapy. Arterioscler Thromb Vasc Biol 29:449–457

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan S, Schiemer J, Zhang X et al (2015) Galpha13 switch region 2 binds to the talin head domain and activates alphaIIbbeta3 integrin in human platelets. J Biol Chem 290:25129–25139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanini L, Roden RC, Bergmeier W (2009) CalDAG-GEFI is at the nexus of calcium-dependent platelet activation. Blood 114:2506–2514

    Article  CAS  PubMed  Google Scholar 

  • Stefanini L, Boulaftali Y, Ouellette TD et al (2012) Rap1-Rac1 circuits potentiate platelet activation. Arterioscler Thromb Vasc Biol 32:434–441

    Article  CAS  PubMed  Google Scholar 

  • Stefanini L, Paul DS, Robledo RF et al (2015) RASA3 is a critical inhibitor of RAP1-dependent platelet activation. J Clin Invest 125:1419–1432

    Article  PubMed  PubMed Central  Google Scholar 

  • Stegner D, Nieswandt B (2011) Platelet receptor signaling in thrombus formation. J Mol Med (Berl) 89:109–121

    Article  CAS  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  CAS  PubMed  Google Scholar 

  • Stolla M, Stefanini L, Andre P et al (2011a) CalDAG-GEFI deficiency protects mice in a novel model of Fcgamma RIIA-mediated thrombosis and thrombocytopenia. Blood 118:1113–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolla M, Stefanini L, Roden RC et al (2011b) The kinetics of alphaIIbbeta3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy. Blood 117:1005–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strathmann M, Simon MI (1990) G protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci U S A 87:9113–9117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stritt S, Wolf K, Lorenz V et al (2015) Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood 125:219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su W, Wynne J, Pinheiro EM et al (2015) Rap1 and its effector RIAM are required for lymphocyte trafficking. Blood 126:2695–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Yamamoto M, Wada H et al (1999) Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase. Blood 93:3408–3417

    CAS  PubMed  Google Scholar 

  • Suzuki A, Shin JW, Wang Y et al (2013) RhoA is essential for maintaining normal megakaryocyte ploidy and platelet generation. PLoS One 8:e69315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki-Inoue K, Fuller GL, Garcia A et al (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542–549

    Article  CAS  PubMed  Google Scholar 

  • Swank RT, Jiang SY, Reddington M et al (1993) Inherited abnormalities in platelet organelles and platelet formation and associated altered expression of low molecular weight guanosine triphosphate-binding proteins in the mouse pigment mutant gunmetal. Blood 81:2626–2635

    CAS  PubMed  Google Scholar 

  • Taira K, Umikawa M, Takei K et al (2004) The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J Biol Chem 279:49488–49496

    Article  CAS  PubMed  Google Scholar 

  • Taylor SJ, Smith JA, Exton JH (1990) Purification from bovine liver membranes of a guanine nucleotide-dependent activator of phosphoinositide-specific phospholipase C. Immunologic identification as a novel G-protein alpha subunit. J Biol Chem 265:17150–17156

    CAS  PubMed  Google Scholar 

  • ten Klooster JP, Jaffer ZM, Chernoff J et al (2006) Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. J Cell Biol 172:759–769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas SG, Calaminus SD, Machesky LM et al (2011) G-protein coupled and ITAM receptor regulation of the formin FHOD1 through Rho kinase in platelets. J Thromb Haemost 9:1648–1651

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Nelson DL, Stewart DM (2000) Cdc42-interacting protein 4 mediates binding of the Wiskott–Aldrich syndrome protein to microtubules. J Biol Chem 275:7854–7861

    Article  CAS  PubMed  Google Scholar 

  • Tolmachova T, Abrink M, Futter CE et al (2007) Rab27b regulates number and secretion of platelet dense granules. Proc Natl Acad Sci U S A 104:5872–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torti M, Ramaschi G, Sinigaglia F et al (1993) Association of the low molecular weight GTP-binding protein rap2B with the cytoskeleton during platelet aggregation. Proc Natl Acad Sci U S A 90:7553–7557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulasne D, Bori T, Watson SP (2002) Regulation of RAS in human platelets. Evidence that activation of RAS is not sufficient to lead to ERK1-2 phosphorylation. Eur J Biochem 269:1511–1517

    Article  CAS  PubMed  Google Scholar 

  • Vaidyula VR, Rao AK (2003) Role of Galphaq and phospholipase C-beta2 in human platelets activation by thrombin receptors PAR1 and PAR4: studies in human platelets deficient in Galphaq and phospholipase C-beta2. Br J Haematol 121:491–496

    Article  CAS  PubMed  Google Scholar 

  • Van Geet C, Izzi B, Labarque V et al (2009) Human platelet pathology related to defects in the G-protein signaling cascade. J Thromb Haemost 7(Suppl 1):282–286

    Article  PubMed  CAS  Google Scholar 

  • Varnai P, Bondeva T, Tamas P et al (2005) Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J Cell Sci 118:4879–4888

    Article  CAS  PubMed  Google Scholar 

  • Vidal C, Geny B, Melle J et al (2002) Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: implication of the cortical-actin binding protein cortactin. Blood 100:4462–4469

    Article  CAS  PubMed  Google Scholar 

  • Vincent S, Jeanteur P, Fort P (1992) Growth-regulated expression of rhoG, a new member of the ras homolog gene family. Mol Cell Biol 12:3138–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss B, McLaughlin JN, Holinstat M et al (2007) PAR1, but not PAR4, activates human platelets through a Gi/o/phosphoinositide-3 kinase signaling axis. Mol Pharmacol 71:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Walsh TG, Harper MT, Poole AW (2015) SDF-1alpha is a novel autocrine activator of platelets operating through its receptor CXCR4. Cell Signal 27:37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe N, Bodin L, Pandey M et al (2008) Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin alphaIIbbeta3. J Cell Biol 181:1211–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Paterson HF, Marshall CJ (2005) Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 7:255–261

    Article  CAS  PubMed  Google Scholar 

  • Williams JA, Chen X, Sabbatini ME (2009) Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am J Physiol Endocrinol Metab 296:E405–414

    Article  CAS  PubMed  Google Scholar 

  • Williams CM, Harper MT, Goggs R et al (2015) Leukemia-associated Rho guanine-nucleotide exchange factor is not critical for RhoA regulation, yet is important for platelet activation and thrombosis in mice. J Thromb Haemost 13:2102–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson SM, Yip R, Swing DA et al (2000) A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci U S A 97:7933–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolthuis RM, Franke B, van Triest M et al (1998) Activation of the small GTPase Ral in platelets. Mol Cell Biol 18:2486–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woulfe DS (2010) Akt signaling in platelets and thrombosis. Expert Rev Hematol 3:81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woulfe D, Jiang H, Mortensen R et al (2002) Activation of Rap1B by G(i) family members in platelets. J Biol Chem 277:23382–23390

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wu J, Kowalska MA et al (2000) Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proc Natl Acad Sci U S A 97:9984–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Wu J, Jiang H et al (2002) Signaling through Gi family members in platelets. Redundancy and specificity in the regulation of adenylyl cyclase and other effectors. J Biol Chem 277:46035–46042

    Article  CAS  PubMed  Google Scholar 

  • Zeiler M, Moser M, Mann M (2014) Copy number analysis of the murine platelet proteome spanning the complete abundance range. Mol Cell Proteomics 13:3435–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Xiang B, Ye S et al (2011) Distinct roles for Rap1b protein in platelet secretion and integrin alphaIIbbeta3 outside-in signaling. J Biol Chem 286:39466–39477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the National Heart, Lung, and Blood Institute of the National Institutes of Health (W.B.) and the Program for Young Researchers “Rita Levi Montalcini” (L.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bergmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stefanini, L., Lee, R.H., Bergmeier, W. (2017). GTPases. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_20

Download citation

Publish with us

Policies and ethics