Skip to main content

Implications of Platelet RNA to Vascular Health and Disease

  • Chapter
  • First Online:
Platelets in Thrombotic and Non-Thrombotic Disorders

Abstract

The historical relevance of platelets has focused on their traditional role in the circulation of hemostasis and thrombosis. Recent studies of platelet composition and novel platelet roles in a number of non-hemostatic systemic responses have since broadened our appreciation for the functional capabilities of platelets. One such expansion of our understanding includes the exploration of the platelet’s endogenous RNA and its ability to regulate platelet immune and inflammatory processes. RNA profiling of platelet messenger RNA (mRNA) and microRNA (miRNA) revealed distinct expression patterns associated with a number of platelet phenotypes and disease pathologies. A deeper understanding of the genetic material present in platelets endogenously and in disease settings can further elucidate the role platelet RNA plays in thrombosis and the implications of platelet involvement in fields such as cancer, infection, and systemic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aatonen M, Gronholm M, Siljander PR (2012) Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost 38(1):102–113

    Article  CAS  PubMed  Google Scholar 

  • Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P (2005) Platelets express functional Toll-like receptor-4. Blood 106(7):2417–2423

    Article  CAS  PubMed  Google Scholar 

  • Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, Ni H, Lazarus AH, Freedman J, Semple JW (2006) Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 107(2):637–641

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu LM, Freedman JE (2010) The role of inflammation in regulating platelet production and function: toll-like receptors in platelets and megakaryocytes. Thromb Res 125(3):205–209

    Article  CAS  PubMed  Google Scholar 

  • Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray PF, McKenzie SE, Edelstein LC, Nagalla S, Delgrosso K, Ertel A, Kupper J, Jing Y, Londin E, Loher P, Chen HW, Fortina P, Rigoutsos I (2013) The complex transcriptional landscape of the anucleate human platelet. BMC Genomics 14:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugert P, Dugrillon A, Gunaydin A, Eichler H, Kluter H (2003) Messenger RNA profiling of human platelets by microarray hybridization. Thromb Haemost 90(4):738–748

    CAS  PubMed  Google Scholar 

  • Cecchetti L, Tolley ND, Michetti N, Bury L, Weyrich AS, Gresele P (2011) Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood 118(7):1903–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469

    Article  CAS  PubMed  Google Scholar 

  • Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O (2005) Evidence of toll-like receptor molecules on human platelets. Immunol Cell Biol 83(2):196–198

    Article  CAS  PubMed  Google Scholar 

  • Connolly AJ, Ishihara H, Kahn ML, Farese RV Jr, Coughlin SR (1996) Role of the thrombin receptor in development and evidence for a second receptor. Nature 381(6582):516–519

    Article  CAS  PubMed  Google Scholar 

  • Darrow AL, Fung-Leung WP, Ye RD, Santulli RJ, Cheung WM, Derian CK, Burns CL, Damiano BP, Zhou L, Keenan CM, Peterson PA, Andrade-Gordon P (1996) Biological consequences of thrombin receptor deficiency in mice. Thromb Haemost 76(6):860–866

    CAS  PubMed  Google Scholar 

  • Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, Yost CC, Rubner FJ, Albertine KH, Swoboda KJ, Fratto CM, Tolley E, Kraiss LW, McIntyre TM, Zimmerman GA, Weyrich AS (2005) Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122(3):379–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, Bergeron A, Kong X, Nagalla S, Mohandas N, Cohen DE, Dong JF, Shaw C, Bray PF (2013) Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med 19(12):1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman JE, Larson MG, Tanriverdi K, O’Donnell CJ, Morin K, Hakanson AS, Vasan RS, Johnson AD, Iafrati MD, Benjamin EJ (2010) Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation 122(2):119–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Garraud O, Cognasse F (2010) Platelet toll-like receptor expression: the link between “danger” ligands and inflammation. Inflamm Allergy Drug Targets 9(5):322–333

    Article  CAS  PubMed  Google Scholar 

  • Gasparyan AY, Stavropoulos-Kalinoglou A, Mikhailidis DP, Douglas KM, Kitas GD (2011) Platelet function in rheumatoid arthritis: arthritic and cardiovascular implications. Rheumatol Int 31(2):153–164

    Article  CAS  PubMed  Google Scholar 

  • Gidlof O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, Erlinge D (2013) Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 121(19):3908–3917

    Article  PubMed  Google Scholar 

  • Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF (2003) Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 101(6):2285–2293

    Article  CAS  PubMed  Google Scholar 

  • Gnatenko DV, Zhu W, Xu X, Samuel ET, Monaghan M, Zarrabi MH, Kim C, Dhundale A, Bahou WF (2010) Class prediction models of thrombocytosis using genetic biomarkers. Blood 115(1):7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Healy AM, Pickard MD, Pradhan AD, Wang Y, Chen Z, Croce K, Sakuma M, Shi C, Zago AC, Garasic J, Damokosh AI, Dowie TL, Poisson L, Lillie J, Libby P, Ridker PM, Simon DI (2006) Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation 113(19):2278–2284

    Article  CAS  PubMed  Google Scholar 

  • Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799

    CAS  PubMed  Google Scholar 

  • Heldin CH (2013) Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal 11:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79(4):1283–1316

    CAS  PubMed  Google Scholar 

  • Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L (2015) Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571):118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibele GM, Kay NE, Johnson GJ, Jacob HS (1985) Human platelets exert cytotoxic effects on tumor cells. Blood 65(5):1252–1255

    CAS  PubMed  Google Scholar 

  • Ishihara H, Zeng D, Connolly AJ, Tam C, Coughlin SR (1998) Antibodies to protease-activated receptor 3 inhibit activation of mouse platelets by thrombin. Blood 91(11):4152–4157

    CAS  PubMed  Google Scholar 

  • Jain S, Harris J, Ware J (2010) Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol 30(12):2362–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Kapetanaki MG, Raghavachari N, Woodhouse K, Yu G, Barge S, Coronnello C, Benos PV, Kato GJ, Kaminski N, Gladwin MT (2013) Expression of regulatory platelet microRNAs in patients with sickle cell disease. PLoS One 8(4):e60932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurasz P, Alonso-Escolano D, Radomski MW (2004) Platelet—cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharmacol 143(7):819–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurk K, Kehrel BE (2005) Platelets: physiology and biochemistry. Semin Thromb Hemost 31(4):381–392

    Article  CAS  PubMed  Google Scholar 

  • Kahr WH, Hinckley J, Li L, Schwertz H, Christensen H, Rowley JW, Pluthero FG, Urban D, Fabbro S, Nixon B, Gadzinski R, Storck M, Wang K, Ryu GY, Jobe SM, Schutte BC, Moseley J, Loughran NB, Parkinson J, Weyrich AS, Di Paola J (2011) Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 43(8):738–740

    Article  CAS  PubMed  Google Scholar 

  • Koupenova M, Vitseva O, MacKay CR, Beaulieu LM, Benjamin EJ, Mick E, Kurt-Jones EA, Ravid K, Freedman JE (2014) Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 124(5):791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lackie JM (2010) A dictionary of biomedicine. Oxford paperback reference, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, Provost P (2013) Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 122(2):253–261

    Article  CAS  PubMed  Google Scholar 

  • Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P (2009) Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 16(9):961–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Londin ER, Hatzimichael E, Loher P, Edelstein L, Shaw C, Delgrosso K, Fortina P, Bray PF, McKenzie SE, Rigoutsos I (2014) The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome. Biol Direct 9:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Lood C, Amisten S, Gullstrand B, Jonsen A, Allhorn M, Truedsson L, Sturfelt G, Erlinge D, Bengtsson AA (2010) Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. Blood 116(11):1951–1957

    Article  CAS  PubMed  Google Scholar 

  • Ma AC, Kubes P (2008) Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 6(3):415–420

    Article  CAS  PubMed  Google Scholar 

  • McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P (2012) Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12(3):324–333

    Article  CAS  PubMed  Google Scholar 

  • McRedmond JP, Park SD, Reilly DF, Coppinger JA, Maguire PB, Shields DC, Fitzgerald DJ (2004) Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics 3(2):133–144

    Article  CAS  PubMed  Google Scholar 

  • Michelson AD (2013) Platelets, 3rd edn. Academic, London

    Google Scholar 

  • Mohle R, Green D, Moore MA, Nachman RL, Rafii S (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA 94(2):663–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, Chen J, McKnight GS, Lopez JA, Yang L, Jin Y, Bray MS, Leal SM, Dong JF, Bray PF (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117(19):5189–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niers TM, Klerk CP, DiNisio M, Van Noorden CJ, Buller HR, Reitsma PH, Richel DJ (2007) Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit Rev Oncol Hematol 61(3):195–207

    Article  CAS  PubMed  Google Scholar 

  • Pinedo HM, Verheul HM, D’Amato RJ, Folkman J (1998) Involvement of platelets in tumour angiogenesis? Lancet 352(9142):1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Ple H, Landry P, Benham A, Coarfa C, Gunaratne PH, Provost P (2012) The repertoire and features of human platelet microRNAs. PLoS One 7(12):e50746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risitano A, Beaulieu LM, Vitseva O, Freedman JE (2012) Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 119(26):6288–6295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS (2011) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118(14):e101–e111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley JW, Schwertz H, Weyrich AS (2012) Platelet mRNA: the meaning behind the message. Curr Opin Hematol 19(5):385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabrkhany S, Griffioen AW, Oude Egbrink MG (2011) The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta 1815(2):189–196

    CAS  PubMed  Google Scholar 

  • Semple JW, Freedman J (2010) Platelets and innate immunity. Cell Mol Life Sci 67(4):499–511

    Article  CAS  PubMed  Google Scholar 

  • Shashkin PN, Brown GT, Ghosh A, Marathe GK, McIntyre TM (2008) Lipopolysaccharide is a direct agonist for platelet RNA splicing. J Immunol 181(5):3495–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, Ejiri J, Kobayashi S, Hirata K, Kawashima S, Yokoyama M (2004) Expression of Toll-like receptors on human platelets. Thromb Res 113(6):379–385

    Article  CAS  PubMed  Google Scholar 

  • Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES, Kong X, Ma L, Fortina P, Kunapuli S, Holinstat M, McKenzie SE, Dong JF, Shaw CA, Bray PF (2014) Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 123(16):e37–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun NC, McAfee WM, Hum GJ, Weiner JM (1979) Hemostatic abnormalities in malignancy, a prospective study of one hundred eight patients. Part I Coagulation studies. Am J Clin Pathol 71(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Terashita Z, Imura Y, Nishikawa K (1985) Inhibition by CV-3988 of the binding of [3H]-platelet activating factor (PAF) to the platelet. Biochem Pharmacol 34(9):1491–1495

    Article  CAS  PubMed  Google Scholar 

  • Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S (2007) Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 5(3):520–527

    Article  CAS  PubMed  Google Scholar 

  • Tsakiris DA, Scudder L, Hodivala-Dilke K, Hynes RO, Coller BS (1999) Hemostasis in the mouse (Mus musculus): a review. Thromb Haemost 81(2):177–188

    CAS  PubMed  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  • Verheul HM, Pinedo HM (2000) The role of vascular endothelial growth factor (VEGF) in tumor angiogenesis and early clinical development of VEGF-receptor kinase inhibitors. Clin Breast Cancer 1(Suppl 1):S80–S84

    Article  PubMed  Google Scholar 

  • Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA (2012) Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 34(1):5–30

    Article  CAS  PubMed  Google Scholar 

  • Wahlgren J, De LKT, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40(17):e130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang H (2008) Platelet-induced inhibition of tumor cell growth. Thromb Res 123(2):324–330

    Article  CAS  PubMed  Google Scholar 

  • Wartiovaara U, Salven P, Mikkola H, Lassila R, Kaukonen J, Joukov V, Orpana A, Ristimaki A, Heikinheimo M, Joensuu H, Alitalo K, Palotie A (1998) Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost 80(1):171–175

    CAS  PubMed  Google Scholar 

  • Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA (2009) Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 7(2):241–246

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Gnatenko DV, Ju J, Hitchcock IS, Martin DW, Zhu W, Bahou WF (2012) Systematic analysis of microRNA fingerprints in thrombocythemic platelets using integrated platforms. Blood 120(17):3575–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman GA, Weyrich AS (2008) Signal-dependent protein synthesis by activated platelets: new pathways to altered phenotype and function. Arterioscler Thromb Vasc Biol 28(3):s17–s24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like thank Olga Vitseva for preparing the platelet image and to acknowledge Hannah Hoffman and Hannah Iafrati for their assistance in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Freedman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Clancy, L., Freedman, J.E. (2017). Implications of Platelet RNA to Vascular Health and Disease. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_19

Download citation

Publish with us

Policies and ethics