Skip to main content

Multi-technology Products

  • Chapter
  • First Online:
Integrative Production Technology

Abstract

Development of technical solutions that lead to widening the use of multi-technological products as well as in assessing ecological and economic potentials of multi-technological products have not yet been studied intensively. The activities conducted in the context of this research area focus on these aspects. The aforementioned aspects have been examined, evaluated and quantified on the basis of three example products resulting from the first funding period. The research activities conducted on the example components deliver the basis for the layout of different integrated multi-technology production systems. Technical solutions that enable coupling of different process steps with each other as well as the integration of different functionalities and different materials in final multi-technology products have been proposed. The complex interdependencies of the products themselves and their associated production processes have been researched and evaluated intensively. Finally, a profitability assessment of the proposed solutions was conducted and future research topics identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atzor M (1989) Aspekte des Magnetronsputterns zur Herstellung verschleiß- und korrosionsbeständiger Schichten auf Chrombasis. Dissertation RWTH Aachen, Series 5: Grund und Werkstoffe 156, VDI-Verlag, Düsseldorf

    Google Scholar 

  • Bagcivan N, Bobzin K, Theiß S (2013a) (Cr1−xAlx)N: a comparison of direct current, middle frequency pulsed and high power pulsed magnetron sputtering for injection molding components. Thin Solid Films 528:180–186

    Article  Google Scholar 

  • Bagcivan N, Bobzin K, Grundmeier G, Wiesing M, Ozcan O, Kunze C, Brugnara RH (2013b) Influence of HPPMS pulse length and inert gas mixture on the properties of (Cr, Al)N coatings. Thin Solid Films 549:192–198

    Article  Google Scholar 

  • Bagcivan N, Bobzin K, Theiß S (2013c) Synthesis of nano-structured HPPMS CrN/AlN coatings. J Phys D Appl Phys 46:084001

    Article  Google Scholar 

  • Bagcivan N, Bobzin K, Ludwig A, Grochla D, Brugnara RH (2014a) CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering. Thin Solid Films 572:153–160

    Article  Google Scholar 

  • Bagcivan N, Bobzin K, Brögelmann T, Kalscheuer C (2014b) Development of (Cr, Al)ON coatings using middle frequency magnetron sputtering and investigations on tribological behavior against polymers. Surf Coat Technol 260:347–361

    Article  Google Scholar 

  • Bagnall DM, Boden SA (2008) Tunable reflection minima of nanostructured antireflective surfaces. Appl Phys Lett 93:133108. doi:10.1063/1.2993231

    Article  Google Scholar 

  • Bahbou F, Nylén P (2005) Relationship between surface topography parameters and adhesion strength for plasma spraying. In: Lugscheider E (ed) Proceedings of the international thermal spray conference, 2005. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, Düsseldorf, pp 1027–1031

    Google Scholar 

  • Bargel H, Schulze G (2012) Werkstoffkunde, 11th edn. Springer-Lehrbuch, Springer, Berlin

    Book  Google Scholar 

  • Bass M (2010) Handbook of optics: volume IV—optical properties of materials, nonlinear optics, quantum optics, 3rd edn. McGraw-Hill Professional, New York City

    Google Scholar 

  • Bäuerle A, Bruneton A, Loosen P, Stollenwerk J, Wester R (2012) Algorithm for irradiance tailoring using multiple freeform optical surfaces. Opt Express 20:14477–14485

    Article  Google Scholar 

  • Berneck J (2011) Kunststoff statt metall. Kunststoffe 102(9):109–111

    Google Scholar 

  • Bobzin K (2013) Thermisches Spritzen. Oberflächentechnik für den Maschinenbau. Wiley-VCH, Weinheim, pp 293–321

    Google Scholar 

  • Bobzin K, Lugscheider E, Nickel R, Immich P (2006) (Cr1−x, Alx)N ein review über ein vielseitig einsetzbares schichtsystem. Materialwiss Werkstofftech 37:833–834

    Article  Google Scholar 

  • Bobzin K, Lugscheider E, Nickel R, Bagcivan N, Krämer A (2007a) Wear behavior of (Cr1−xAlx)N PVD-coatings in dry running conditions. Wear 263:1274–1280

    Article  Google Scholar 

  • Bobzin K, Nickel R, Bagcivan N, Manz FD (2007b) PVD-coatings in injection molding machines for processing optical polymers. Plasma Processes Polym 4:144–149

    Article  Google Scholar 

  • Bobzin K, Bagcivan N, Immich P, Bolz S, Cremer R, Leyendecker T (2008) Mechanical properties and oxidation behaviour of (Al, Cr)N and (Al, Cr, Si)N coatings for cutting tools deposited by HPPMS. Thin Solid Films 517:1251–1256

    Article  Google Scholar 

  • Bobzin K, Kopp N, Warda T, Oete M (2012) Numerische Berechnungen zur Bestimmung der effektiven Eigenschaften kaltgasgespritzter Schichten. In: Proceedings of the 15th materials technology colloquium, Chemnitz, 2012, pp 62–67

    Google Scholar 

  • Bobzin K, Hopmann C, Kopp N, Linke TF, Schulz C, Wunderle J (2013) Investigation of transferring coatings using the in-mold metal spraying process. In: Proceedings of the 10th international conference the “A” coatings, Aachen, pp 205–214

    Google Scholar 

  • Bobzin K, Bagcivan N, Brögelmann T, Brugnara RH (2014a) HPPMS-Beschichtungen metallischer Komponenten für die Kunststoff-verarbeitung. In: Proceedings of 27th IKV colloquium, pp 6–17

    Google Scholar 

  • Bobzin K, Bagcivan N, Brögelmann T, Brugnara RH (2014b) HPPMS- Beschichtungen metallischer Komponenten für die Kunststoff-verarbeitung. GAK Fachmagazin für die Polymerindustrie 10:616–621

    Google Scholar 

  • Bobzin K, Öte M, Linke TF, Schulz C, Hopmann C, Wunderle J (2014c) Integration of electrical functionality by transplantation of cold sprayed electrical conductive Cu tracks via injection moulding. In: Proceedings of international thermal spray conference, Barcelona, pp 215–220

    Google Scholar 

  • Bobzin K, Öte M, Linke TF, Sommer J, Liao X (2015) Influence of process parameter on grit blasting as a pretreatment process for thermal spraying. J Therm Spray Technol 1–9

    Google Scholar 

  • Bouvard JL, Francis DK, Tschopp MA, Marin EB, Bammann DJ, Horstemeyer MF (2013) An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int J Plast

    Google Scholar 

  • Brecher C (2011) Integrative Produktionstechnik für Hochlohnländer. VDI, Springer, Heidelberg

    Book  Google Scholar 

  • Brecher C (ed) (2012) Integrative production technology for high-wage countries. Springer-Verlag Berlin. doi:10.1007/978-3-642-21067-9_5

  • Breuninger J, Becker R, Wolf A, Rommel S, Verl A (2013) Generative Fertigung mit Kunststoffen: Konzeption und Konstruktion für Selektives Lasersintern

    Google Scholar 

  • Brockmann W, Kollek H, Hennemann OD (1984) Failure mechanisms in the boundary layer zone of metal/polymer systems. In: Mittal KL (ed) Adhesive joints. Plenum Public Press, New York, pp 484–496

    Google Scholar 

  • Brosig E (1996) Chemisch-Kupfer sorgt für eine schützende Haut. EMV-Schutz: Kunststoffgehäuse selektiv metallisieren. Industrieanzeiger 43:44–46

    Google Scholar 

  • Bürgel R, Maier H, Niendorf T (2011) Handbuch Hochtemperatur-werkstofftechnik, Grundlagen, Werkstoffbeanspruchungen, Hoch-temperaturlegierungen und -beschichtungen, Bd. 4

    Google Scholar 

  • Bürkle E, Burr A (2007) In drei Sekunden von 100 auf 140 Grad. Kunststoffe 97(10):210–496

    Google Scholar 

  • Cao Y, Karlsson B, Ahlström J (2015) Temperature and strain rate effects on the mechanical behavior of dual phase steel. Mater Sci Eng A 636:124–132

    Article  Google Scholar 

  • Chanda M, Roy K (2007) Plastics technology handbook. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Chaves J (2008) Introduction to nonimaging optics. CRC Press, Boca Raton. ISBN: 9781420054293

    Google Scholar 

  • Chevalier L, Luo Y-M, Monteiro E, Plantamura B (2010) Strain field measurement on 3D surfaces: application to petaloid base of PET bottles under pressure. Int Polym Proc 25(2):93–108

    Article  Google Scholar 

  • Chiffoleau GJA, Steinberg TA, Veidt M (2003) Reflection of structural waves at a solid/liquid interface. Ultrasonic 41:347–356

    Article  Google Scholar 

  • Crawmer D (2013) Coating structures, properties, and materials. In: Tucker RC (ed) ASM handbook, vol 5A., Thermal spray technologyASM International, Materials Park, Ohio, pp 24–60

    Google Scholar 

  • Davis JR (2001) Copper and copper alloys. ASM international, Ohio

    Google Scholar 

  • Dayss E, Leps G, Meinhardt J (1999) Surface modification for improved adhesion of a polymer-metal compound. Surf Coat Technol 9(116–119):986–990

    Article  Google Scholar 

  • Delin M, Rychwalski RW, Kubát J, Klason C, Hutchinson JM (1996) Physical aging time scales and rates for poly(vinyl acetate) stimulated mechanically in the Tg—region. Polym Eng Sci 36(24):2955–2967

    Article  Google Scholar 

  • Ding XZ, Zeng XT (2005) Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering. Surf Coat Technol 200:1372–1376

    Article  Google Scholar 

  • Drummer D, Dörfler R (2007) Mechatronik mit Kunststoffen—Herausforderungen auf dem Weg vom Werkstoff zur Baugruppe. Paper presented at the Spritzgießen 2007, Düsseldorf

    Google Scholar 

  • Drummer D, Gruber K, Meister S (2011) Wechseltemperierung steuert Bauteileigenschaften. Kunststoffe 101(4):46–49

    Google Scholar 

  • Endemann U, Glaser S, Völker M (2002) Kunststoff und Metall im festen Verbund. Verbindungstechnik für Kunststoff-Metall-Hybridstrukturen. Kunststoffe, München 92(11):110–113

    Google Scholar 

  • Fang Q-Z, Wang TJ, Beom HG, Zhao HP (2009) Rate-dependent large deformation behavior of PC/ABS. Polymer 50:296–304

    Article  Google Scholar 

  • Flepp A (2012) Wirschaftlicher als Metall. Kunststoffe 102(8):73–75

    Google Scholar 

  • Fraunhofer ILT (2015) Produktivitätssteigerung bei UKP-Lasersystemen, Pressemitteilung. Retrieved from http://www.ilt.fraunhofer.de/de/publikationen-und-presse/pressemitteilungen/pm2015/pressemitteilung-16-06-2015.html

  • Friedrich J, Pohl M, Gähde J (1981) Untersuchungen zur Plasmaätzung von Polymeren. V. Plasmaätzung von Styrenpolymeren. Acta Polym 32(1):48–55

    Google Scholar 

  • Ganske M (2011) Dynamische Formnesttemperierung—Ein neues Prozessfenster für die Herstellung hochwertiger Kunststoffformteile. In: Proceedings of “Optische Komponenten aus Kunststoffen—Die gesamte Prozesskette im Blick”, Aachen

    Google Scholar 

  • Garbassi F, Morra M, Occhhiello E (1998) Polymer surfaces—from physics to technology. Wiley-VCH, Chichester

    Google Scholar 

  • Geiger M, Ehrenstein GW (eds) (2003) Werkstoff- und prozessoptimierte Herstellung flächiger Kunststoff-Kunststoff und Kunststoff-Metall-Verbundbauteile: Tagungsband zum Berichts- und Industriekolloquium 2003 des SFB 396

    Google Scholar 

  • Gießauf J, Pillwein G, Steinbichler G (2008) Die variotherme Temperierung wird produktionstauglich. Kunststoffe 98(8):87–92

    Google Scholar 

  • Goldbach H, Koch B (1993) Light weight constructional element. Germany Patent EP 0370342 B1, 11 Aug 1993

    Google Scholar 

  • Grob W, Müller K, Habiger E (2003) EMC Kompendium 2003. Publish-Industry, München

    Google Scholar 

  • Großmann J (2009) Einfluss von Plasmabehandlungen auf die Haftfestigkeit vakuumtechnisch hergestellter Polymer-Metall-Verbunde. Universität Erlangen-Nürnberg, Dissertation, Erlangen

    Google Scholar 

  • Grote K, Feldhusen J (2014) Dubbel: Taschenbuch für den Maschinenbau. 24. aktualisierte Auflage. SpringerLink: Bücher. Springer, Berlin

    Google Scholar 

  • Habenicht G (2009) Kleben—Grundlagen, Technologie, Anwendungen. Springer-Verlag, Berlin

    Google Scholar 

  • Hanzawa F (2009) Lens films and reflective polarization films. In: Kobayashi S, Mikoshiba S, Lim S (eds) LCD backlights. Wiley, Chichester. doi:10.1002/9780470744826.ch21

  • Hartmann C, Gillner A (2014) Plasma expansion during laser structuring of metals. In: Proceedings of the 1st smart laser processing conference, Yokohama, Japan, 22–24 April

    Google Scholar 

  • Hopmann C (2016) Integrative Kunststofftechnik 2016–28. Internationales Kolloquium Kunststofftechnik. Shaker Verlag, Aachen

    Google Scholar 

  • Hopmann C, Klein J (2015) Determination of strain rate dependent material data for CEA crash simulation of polymers using digital image correlation. Comput Mater Sci 100:181–190

    Article  Google Scholar 

  • Hopmann C, Kremer Ch, Petzinka F, Köpf M, Eilbracht S, Steger M (2012) Development of a FEA simulation model for variothermal extrusion embossing. In: Proceedings of the polymer processing society 28th annual meeting, Pattaya, Thailand

    Google Scholar 

  • Hopmann C, Schöngart M, Klein J, Weber M (2015) Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials. In: AIP conference proceedings 1664

    Google Scholar 

  • Kammer C (1995) Aluminium-Taschenbuch. Band 1: Grundlagen und Werkstoffe (15. Aufl.). Aluminium-Verlag, Düsseldorf

    Google Scholar 

  • Kanani N (2009) Galvanotechnik: Grundlagen: Verfahren und Praxis einer Schlüsseltechnologie. Carl Hanser Verlag, München, Wien

    Google Scholar 

  • Kayani A, Smith RJ, Teintze S, Kopczyk M, Gannon PE, Deibert MC, Gorokhovsky VI, Shutthanandan V (2006) Oxidation studies of CrAlON nanolayered coatings on steel plates. Surf Coat Technol 201:1685–1694

    Article  Google Scholar 

  • Kelly PJ, Bradley JW (2009) Pulsed magnetron sputtering-process overview and applications. Surface Engineering Group, Dalton Research Institute, Manchester Metropolitan University, Manchester M15GD, UK and Dept. of Electrical Engineering, University of Liverpool, Liverpool, UK

    Google Scholar 

  • Khatibi A, Sjölen J, Greczynski G, Jensen J, Eklund P, Hultman L (2012) Structural and mechanical properties of Cr–Al–O–N thin films grown by cathodic arc deposition. Acta Mater 60:6494–6507

    Article  Google Scholar 

  • Kimura A, Kawate M, Hasegawa H, Suzuki T (2003) Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films. Surf Coat Technol 169–170:367–370

    Article  Google Scholar 

  • Klaiber F (2010) Entwicklung einer Anlagen- und Prozesstechnik für die Herstellung superhydrophober Oberflächen im Spritzgießverfahren. Rheinisch-Westfälische Technische Hochschule Aachen, Dissertation

    Google Scholar 

  • Klein J, Hopmann C (2016) On the origin and handling of the force oscillation phenomenon in tensile impact testing of polymer materials. doi:10.1007/s11340-015-0124-z

  • Kolling S, Haufe A, Feucht M, Bois PAD (2005) SAMP-1: a semi-analytical model for the simulation of polymers. 4. LS-DYNA Anwenderforum

    Google Scholar 

  • Krager-Kocsis J, Benevolenski OI (2001) Toward understanding the stress oscillation phenomenon in polymers due to tensile impact loading. J Mater Sci 36:3365–3371

    Article  Google Scholar 

  • Kuhn S, Burr A, Kübler M, Deckert M, Bleesen C (2011) The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system. J Micromech Microeng 21(025024):1–18

    Google Scholar 

  • Lava P, Coppieters S, Wang Y, Pv Houtte, Debruyne D (2011) Assessment of measuring errors in strain fields obtained via DIC on planar sheet metal specimens with a non-perpendicular camera alignment. Appl Mech Mater 70:165–170

    Article  Google Scholar 

  • Li Z, Lambros J (2001) Strain rate effects on the thermomechanical behavior of polymers. Int J Solids Struct 38:3549–3562

    Article  MATH  Google Scholar 

  • Lin FC, Liao LY, Liao CY, Huang YP, Shieh HPD (2008) Dynamic backlight gamma on high dynamic range LCD TVs. J Disp Technol 4(2):139–146

    Article  Google Scholar 

  • Lin HY, Chang CH, YOUNG WB (2011) Experimental study on the filling of nano structures with infrared mold surface heating. Int Polym Proc 26(1):73–81

    Article  Google Scholar 

  • Liu A, Guo M, Zhao M, Hu M (2006) Arc sprayed erosion-resistant coating for carbon fiber reinforced polymer matrix composite substrates. Surf Coat Technol 200(9):3073–3077

    Article  Google Scholar 

  • Lugscheider E, Bobzin K, Lackner K (2003) Investigations of mechanical and tribological properties of CrAlN+C thin coatings deposited on cutting tools. Surf Coat Technol 174–175:681–686

    Article  Google Scholar 

  • Maes M (2007) Gepulste Abscheidung von (Cr,Al)N PVD-Niedertemperaturschichtsystemen für Hochleistungsbauteile. Dissertation RWTH Aachen, Shaker-Verlag, Aachen. ISBN: 978-3-8322-6570-0

    Google Scholar 

  • Martin PM (2011) Introduction to surface engineering and functionally engineered materials. ISBN: 978-0-470-63927-6

    Google Scholar 

  • Moritzer E, Budde C, Hüttner M (2015) Wie Kurz- und Endlosfasern sich am besten vertragen. Materialeigenschaften beeinflussen die Verbundfestigkeit zwischen Organoblech und angespritztem Thermoplast. Kunststoffe, München 105(3):85–88

    Google Scholar 

  • Ng SH, Wang ZF (2009) Hot roller embossing for microfluidics: process and challenges. Springer Science+Business, Singapore Institute of Manufacturing Technology, Singapore

    Google Scholar 

  • Nikolova D (2005) Charakterisierung und Modifizierung der Grenzflächen im Polymer-Metall-Verbund. Universität Halle-Wittenberg, Halle

    Google Scholar 

  • Op de Laak M, Pötsch G, Schwitzer K (2001) Kunststoff-Metall-Hybride. Möglichkeiten zur Herstellung von Strukturbauteilen. Kunststoffe, München 91(9):112–118

    Google Scholar 

  • Peng L, Deng Y, Yi P, Lai X (2013) Micro hot embossing of thermoplastic polymers: a review. J Micromech Microeng 24(1)

    Google Scholar 

  • Pfeiffer B (2005) Elektrisch leitfähige Kunststoffe. OTTI Technik-Kolleg, Regensburg

    Google Scholar 

  • Pflug G (2008) Kunststoffgehäuse abschirmen. Kunststoffe 98(2):22–27

    Google Scholar 

  • Ranc N, Chrysochoos A (2013) Calorimetric consequences of thermal softening in Johnson–Cook’s model. Mech Mater 65:44–55

    Article  Google Scholar 

  • Richeton J, Ahzi S, Vechio KS, Jiang FC, Adharapurapu RR (2006) Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int J Solids Struct 43(7–8):2318–2335

    Article  Google Scholar 

  • Robitaille F, Yandouze M, Hind S, Jodoin B (2009) Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process. Surf Coat Technol 203(19):2954–2960

    Article  Google Scholar 

  • Rodríguez-Martínez JA, Vadillo G, Zaera R, Fernández-Sáez J, Rittel D (2015) An analysis of microstructural and thermal softening effects in dynamic necking. Mech Mater 80:298–310

    Article  Google Scholar 

  • Sanpo N, Wang J, Berndt CC (2013) Feedstock material considerations for thermal spray. In: Tucker RC (ed) ASM handbook, vol 5A., Thermal spray technologyASM International, Materials Park, Ohio, pp 93–120

    Google Scholar 

  • Scheik S, Schleser M, Reisgen U (2014) Thermisches Direktfügen von Metall und Kunststoff—Eine Alternative zur Klebtechnik? In: Siebenpfeiffer W (ed) Leichtbau-technologien im Automobilbau. Springer Fachmedien Wiesbaden, pp 89–94

    Google Scholar 

  • Schenke G (2014) New hybrid molding process for good adhesion and increased functions of metal/plastic composite parts. Paper presented at the TMS 2014 annual meeting & exhibition, San Diego, USA, 15 Feb 2014–22 Feb 2014

    Google Scholar 

  • Schöngart M (2014) Dynamische Beheizung von Spritzgießwerkzeugen mittels Laserstrahlung. Dissertation RWTH-Aachen

    Google Scholar 

  • Schrey A (1993) Dünne Hartstoffschichten zum Korrosionsschutz, Dissertation RWTH Aachen, Mainz-Verlag. ISBN: 3-93008

    Google Scholar 

  • Şerban DA, Weber G, Marşavina L, Silberschmidt VV, Hufenbach W (2013) Tensile properties of semi-crystalline thermoplastic polymers: effects of temperature and strain rates. Polym Testing 32:413–425

    Article  Google Scholar 

  • Singh D, Tomar SK (2008) Longitudinal waves at a micropolar fluid/solid interface. Int J Solids Struct 45:225–244

    Article  MATH  Google Scholar 

  • Sonne MR, Tutum CC, Hattel JH, Simar A, de Meester D (2013a) The effect of hardening laws and thermal softening on modeling residual stresses. J Mater Process Technol 213:447–486

    Article  Google Scholar 

  • Sonne MR, Tutum CC, Hattel JH, Simar A, de Meester D (2013b) The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3. J Mater Process Technol 213:447–486

    Article  Google Scholar 

  • Steger M, Hartmann C, Beckemper A, Holtkamp J, Gillner S (2013) Fabrication of hierarchical structures by direct laser writing and multi-beam-interference. J Laser Micro/Nanoeng 8:3

    Article  Google Scholar 

  • Stoltenhoff T, Borchers C, Gärtner F, Kreye H (2006) Microstructures and key properties of cold-sprayed and termally sprayed copper coatings. Surf Coat Technol 200(16–17):4947–4960. doi:10.1016/j.surfcoat.2005.05.011

    Article  Google Scholar 

  • Strategies Unlimited (2015) Ultrafast lasers: market analysis and forecast

    Google Scholar 

  • Theiß S (2013) Analyse gepulster Hochleistungsplasmen zur Entwicklung neuartiger PVD-Beschichtungen für die Kunststoffverarbeitung. Dissertation RWTH Aachen, Shaker-Verlag, Aachen. ISBN: 978-3-8440-2112-7

    Google Scholar 

  • Vetter J, Lugscheider E, Guerreiro S (1998) CrAlN coatings deposited by the cathodic vacuum arc deposition. Surf Coat Technol 98(1, 3):1233–1239

    Google Scholar 

  • Weber R (2009) Webers Taschenlexikon Aluminium. Total Aluminium Industry Association (GDA) e.V.‚ Düsseldorf. ISBN: 10 3-937171-20-7, ISBN: 13 978-3-937171-20-3

    Google Scholar 

  • Werner J, Hufenbach W, Kiele J, Herbig A, Klotz A, Bahlsen M (2012) Elektrofahrzeug ultraleicht gebaut. Kunststoffe, München 102(9):97–101

    Google Scholar 

  • Wyrowski F, Kuhn M (2011) Introduction to field tracing. J Mod Opt 58(5–6):449–466. doi:10.1080/09500340.2010.532237

    Article  MATH  Google Scholar 

  • Xiao X (2007) Dynamic tensile testing of plastic materials. Polym Testing 27:164–178

    Article  Google Scholar 

  • Zhao J, Lu L, Rabczuk T (2015) The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers. Comput Mater Sci 567–572

    Google Scholar 

  • Zimmermann T, Preißner L (2009) Variotherme Prozessgestaltung mittels Induktionstemperierung zur spritzgusstechnischen Verarbeitung hochgefüllter Thermoplaste in Brennstoffzellenanwendungen. Institut für Konstruktion und Fertigung in der Feinwerkstechnik und Zentrum für Brennstoffzellen Technik Gmbh, Universität Stuttgart, IGF-Vorhaben Nr. 15955 N

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Bobzin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bobzin, K. et al. (2017). Multi-technology Products. In: Brecher, C., Özdemir, D. (eds) Integrative Production Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47452-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47452-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47451-9

  • Online ISBN: 978-3-319-47452-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics