Skip to main content

Integrated Computational Materials and Production Engineering (ICMPE)

  • Chapter
  • First Online:
Integrative Production Technology

Abstract

The research area “Integrative Computational Materials and Production Engineering” is based on the partial integration of individual models areas within separated simulation platforms with the objective of further development and integration into a single comprehensive ICMPE (Integrative Computational Materials and Production Engineering) platform that combines materials and machining simulation with factory and production planning. In order to realize an operational platform concept, the AixViPMaP has been implemented. AixViPMaP serves as a technology platform for the knowledge-driven design, implementation and improvement of complicated process chains for materials in high-value components. This allows manufacturing related influences to be considered during production in order to optimize process performance and materials properties. The extension and application of the AixViPMaP platform towards production modeling in the sense of an ICMPE based on one holistic system integrates production related models with all material-related models into a single, unified concept. Advanced test cases are under examination to validate and assess this new integrated approach (e.g., new alloys for large gears for the wind industry).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albi G, Bongini M, Cristiani E, Kalise D (2015) Invisible control of self-organizing agents leaving unknown environments. arXiv preprint arXiv:1504.04064

  • Allwood JM, Cullen JM, Carruth MA (2012) Sustainable materials with both eyes open. UIT Cambridge Ltd, Cambridge, England

    Google Scholar 

  • Alogab KA, Matlock DK, Speer JG, Kleebe HJ (2007) The influence of niobium microalloying on austenite grain coarsening behavior of Ti-modified SAE 8620 steel. ISIJ Int 47(2):307–316. doi:10.2355/isijinternational.47.307

    Article  Google Scholar 

  • Armbruster D, Degond P, Ringhofer C (2006) A model for the dynamics of large queuing networks and supply chains. SIAM J Appl Math 66(3):896–920

    Article  MathSciNet  MATH  Google Scholar 

  • Assouline E, Wachtel E, Grigull S, Lustiger A, Wagner HD, Marom G (2001) Lamellar twisting in α isotactic polypropylene transcrystallinity investigated by synchrotron microbeam X-ray diffraction. Polymer 42(14):6231–6237. doi:10.1016/S0032-3861(01)00087-8

    Article  Google Scholar 

  • ASTM, Committee A-1 on Steel, Stainless Steel, and Related Alloys, Subcommittee A01.15 on Bars (2010) Standard test methods for determining hardenability of steel. American Society for Testing and Materials, West Conshohocken, Pennsylvania

    Google Scholar 

  • Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7(12):1103. doi:10.1063/1.1750380

    Article  Google Scholar 

  • Bambach M, Schmitz GJ, Prahl U (2013) ICME–a mere coupling of models or a discipline of its own? In: 2nd world congress on integrated computational materials engineering, pp 285–290

    Google Scholar 

  • Bedoui F, Diani J, Regnier G, Seiler W (2006) Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers. Acta Mater 54(6):1513–1523. doi:10.1016/j.actamat.2005.11.028

    Article  Google Scholar 

  • Brecher C (2012) Integrative production technology for high-wage countries. Springer, Berlin, New York

    Book  Google Scholar 

  • Brömsen O (2005) Steigerung der Zahnfusstragfähigkeit von einsatzgehärteten Stirnrädern durch rechnerische Zahnfussoptimierung. Berichte aus der Produktionstechnik, Bd. 2005, 7. Shaker, Aachen

    Google Scholar 

  • Calculation of load capacity of spur and helical gears (ISO 6336)

    Google Scholar 

  • Cardona M, Fulde P, von Klitzing K, Queisser H, Merlin R, Störmer H, Mehrer H (2007) Diffusion in solids, vol 155. Springer, Berlin

    Google Scholar 

  • Castelein G, Coulon G, G’sell C (1997) Polymers under mechanical stress: deformation of the nanostructure of isotactic polypropylene revealed by scanning force microscopy. Polym Eng Sci 37(10):1694–1701. doi:10.1002/pen.11817

    Article  Google Scholar 

  • Clausen B, Konovalov S, Hoffmann F, Prahl U, Zoch H, Bleck W (2010) Feinkornbeständigkeit von Bauteilen aus dem mikrolegierten Werkstoff 18CrNiMo7-6 in Abhängigkeit der Prozesskette. HTM 65(5):257–268. doi:10.3139/105.110073

    Article  Google Scholar 

  • Coppola S, Grizzuti N, Maffettone PL (2001) Microrheological modeling of flow-induced crystallization. Macromolecules 34(14):5030–5036. doi:10.1021/ma010275e

    Article  Google Scholar 

  • Cullen JM, Allwood JM, Bambach MD (2012) Mapping the global flow of steel: from steelmaking to end-use goods. Environ Sci Technol 46(24):13048–13055. doi:10.1021/es302433p

    Article  Google Scholar 

  • D’Apice C (2010) Modeling, simulation, and optimization of supply chains: a continuous approach. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Davis JR (2005) Gear materials, properties, and manufacture. ASM International, Materials Park, Ohio

    Google Scholar 

  • Degond P, Göttlich S, Herty M, Klar A (2007) A network model for supply chains with multiple policies. Multiscale Model Simul 6(3):820–837. doi:10.1137/060670316

    Article  MathSciNet  MATH  Google Scholar 

  • Dieter GE, Kuhn HA, Semiatin SL (2003) Handbook of workability and process design. ASM International, Materials Park, OH

    Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. The international series of monographs on physics, vol 73. Clarendon Press, Oxford

    Google Scholar 

  • Europäisches Komitee für Normung (2012) Stahl - Mikrophotographische Bestimmung der erkennbaren Korngröße (ISO 643:2012–12)

    Google Scholar 

  • Fetters LJ, Lohse DJ, Colby RH (2007) Chain dimensions and entanglement spacings. In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York, pp 447–454

    Chapter  Google Scholar 

  • Frotey M, Sourmail T, Munier R (2013) Alternative to Ni bearing steels for deep carburizing of wind turbine gears. In: Abel D (ed) Conference for wind power drives CWD 2013: Tagungsband Aachen, 19–20 März 2013, 1. Auflage Apprimus-Verleger, Aachen, pp 167–180

    Google Scholar 

  • Frühe T (2012) Berechnung und Minimierung der Zahnfußspannung von Standard- und LowLoss-Verzahnungen. Ingenieurwissenschaften. Dr, Hut, München

    Google Scholar 

  • Gawroński Z, Malasiński A, Sawicki J (2010) Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels. Int J Automot Technol 11(1):127–131. doi:10.1007/s12239-010-0017-1

  • Gorockiewicz R (2011) The kinetics of low-pressure carburizing of alloy steels. Vacuum 86(4):448–451. doi:10.1016/j.vacuum.2011.09.006

    Article  Google Scholar 

  • Gräfen W, Edenhofer B (2005) New developments in thermo-chemical diffusion processes. Surf Coat Technol 200(5–6):1830–1836. doi:10.1016/j.surfcoat.2005.08.107

    Article  Google Scholar 

  • Grossmann M (1942) Hardenability calculations from chemical composition. AIME Trans 150:227–259

    Google Scholar 

  • Haeck A, Bambach M, Herty M (2015) Modeling steel rolling processes by fluid–like differential equations preprint. RWTH Aachen, IGPM

    Google Scholar 

  • Hemmelmann JE (2007) Simulation des lastfreien und belasteten Zahneingriffs zur Analyse der Drehübertragung von Zahnradgetrieben. Dissertation, RWTH Aachen

    Google Scholar 

  • Henke T, Hirt G, Bambach M (2013) Randwertermittlung für die robuste Auslegung von Schmiedeprozessen. Werkstatttechnik online 103(10):783–788

    Google Scholar 

  • Herty M, Jörres C, Sandjo AN (2012) Optimization of a model Fokker-Planck equation. Kinet Relat Models 5(3):485–503

    Article  MathSciNet  MATH  Google Scholar 

  • Hippenstiel F, Mohrbacher H (2011) Optimization of molybdenum alloyed carburizing steels by Nb microalloying for large gear applications. In: Materials science and technology, Columbus, OH

    Google Scholar 

  • Hirschvogel M, Dommelen H (1992) Some applications of cold and warm forging. J Mater Process Technol 35(3–4):343–356. doi:10.1016/0924-0136(92)90326-N

    Article  Google Scholar 

  • Hirt G, Bambach M, Seuren S, Henke T, Lohmar J (2013) Recent developments in modeling of hot rolling processes: Part I—fundamentals. In: The 11th international conference on numerical methods in industrial forming processes: numiform 2013. AIP, pp 222–230

    Google Scholar 

  • Hoffman JD, Davis GT, Lauritzen JI (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay NB (ed) Treatise on solid state chemistry. Springer, Boston, pp 497–614

    Chapter  Google Scholar 

  • Ivanov DS, Lomov SV, Ivanov SG, Verpoest I (2010) Stress distribution in outer and inner plies of textile laminates and novel boundary conditions for unit cell analysis. Compos A Appl Sci Manuf 41(4):571–580. doi:10.1016/j.compositesa.2010.01.004

    Article  Google Scholar 

  • Janeschitz-Kriegl H (2010) Crystallization modalities in polymer melt processing. Springer, Vienna

    Book  Google Scholar 

  • Jaster M (2010) Why vacuum carburizing. Geartechnology 27(3):31–35

    Google Scholar 

  • Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Metall Soc AIME 135(8):396–415

    Google Scholar 

  • Just E (1969) New formulas for calculating hardenability curves. Metal Prog 96(5):87–88

    Google Scholar 

  • Kalpakjian S, Schmid SR (2001) Manufacturing engineering and technology, 4th edn. Pearson, New Delhi

    Google Scholar 

  • Kamezawa M, Yamada K, Takayanagi M (1979) Preparation of ultrahigh modulus isotactic polypropylene by means of zone drawing. J Appl Polym Sci 24(5):1227–1236. doi:10.1002/app.1979.070240508

    Article  Google Scholar 

  • Khan RU, Bajohr S, Buchholz D, Reimert R, Minh HD, Norinaga K, Janardhanan VM, Tischer S, Deutschmann O (2008) Pyrolysis of propane under vacuum carburizing conditions: an experimental and modeling study. J Anal Appl Pyrol 81(2):148–156. doi:10.1016/j.jaap.2007.09.012

    Article  Google Scholar 

  • Klar A, Wegener R (2004) Traffic flow: models and numerics. In: Bellomo N, Degond P, Pareschi L, Russo G (eds) Modeling and computational methods for kinetic equations. Birkhäuser Boston, Boston, MA, pp 219–258

    Chapter  Google Scholar 

  • Klein MM (2012) Zur Fresstragfähigkeit von Kegelrad- und Hypoidgetrieben. Ingenieurwissenschaften. Verlag Dr, Hut, München

    Google Scholar 

  • Kolmogorov VL (1937) On the statistical theory of the crystallization of metals. Bull Russ Acad Sci (1):355–359

    Google Scholar 

  • Konovalov S (2015) Numerische Entwicklung eines mikrolegierten Einsatzstahls für die Hochtemperatur-Aufkohlung. Dissertation

    Google Scholar 

  • Konter AWA, Farivar H, Post J, Prahl U (2015) Industrial needs for ICME. JOM, 1–11

    Google Scholar 

  • Kopp R, Wiegels H (1999) Einführung in die Umformtechnik, 2nd edn. Aufl. Mainz, Aachen

    Google Scholar 

  • Kula P, Dybowski K, Wolowiec E, Pietrasik R (2014) “Boost-diffusion” vacuum carburising—process optimisation. Vacuum 99:175–179. doi:10.1016/j.vacuum.2013.05.021

    Article  Google Scholar 

  • Kula P, Korecki M, Pietrasik R, Wolowiec E, Dybowski K, Kolodziejczyk L (2009) FineCarb ®—the flexible system for low pressure carburizing. New Options Perform 49(1):133–136

    Google Scholar 

  • Kula P, Pietrasik R, Dybowski K (2005) Vacuum carburizing—process optimization. J Mater Process Technol 164–165:876–881. doi:10.1016/j.jmatprotec.2005.02.145

    Article  Google Scholar 

  • Kula P, Wolowiec E, Pietrasik R, Dybowski K, Klimek L (2012) The precipitation and dissolution of alloy iron carbides in vacuum carburization processes for automotive and aircraft applications—Part I. AMR 486:297–302. doi:10.4028/www.scientific.net/AMR.486.297

    Article  Google Scholar 

  • Laschet G, Apel M (2010) Thermo-elastic homogenization of 3d steel microstructure simulated by the phase-field method. Steel Res Int 81(8):637–643. doi:10.1002/srin.201000077

  • Lavtar L, Muhič T, Kugler G, Terčelj M (2011) Analysis of the main types of damage on a pair of industrial dies for hot forging car steering mechanisms. Eng Fail Anal 18(4):1143–1152. doi:10.1016/j.engfailanal.2010.11.002

    Article  Google Scholar 

  • Li L, Chan C, Yeung KL, Li J, Ng K, Lei Y (2001) Direct observation of growth of lamellae and spherulites of a semicrystalline polymer by AFM. Macromolecules 34(2):316–325. doi:10.1021/ma000273e

    Article  Google Scholar 

  • Liedtke D (2003) Über den Zusammenhang zwischen dem Kohlenstoffgehalt in Stählen und der Härte des Martensits. Mat-wiss u Werkstofftech 34(1):86–92. doi:10.1002/mawe.200390022

    Article  Google Scholar 

  • Lucyshyn T, Knapp G, Kipperer M, Holzer C (2012) Determination of the transition temperature at different cooling rates and its influence on prediction of shrinkage and warpage in injection molding simulation. J Appl Polym Sci 123(2):1162–1168. doi:10.1002/app.34591

    Article  Google Scholar 

  • Lütkehus I, Salecker H, Adlunger K (2015) Potenzial der Windenergie an Land. www.umweltbundesamt.de

  • Luton M, Sellars C (1969) Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metall 17(8):1033–1043. doi:10.1016/0001-6160(69)90049-2

    Article  Google Scholar 

  • Mamalis AG, Manolakos DE, Baldoukas AK (1996) Simulation of the precision forging of bevel gears using implicit and explicit FE techniques. J Mater Process Technol 57(1–2):164–171. doi:10.1016/0924-0136(95)02058-6

    Article  Google Scholar 

  • Michaeli W, Hopmann C, Baranowski T, Laschet G, Heesel B, Arping T, Bobzin K, Kashko T, Öte M (2012) Test Case: Technical Plastic Parts. In: Schmitz GJ, Prahl U (eds) Integrative computational materials engineering. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, pp 221–256

    Chapter  Google Scholar 

  • Michailidis L, Herty M, Ziegler M (2015) Kinetic part-feeding models for assembly lines in automotive industries. Math Models Methods Appl Sci 25(02):283–308. doi:10.1142/S0218202515500104

    Article  MathSciNet  MATH  Google Scholar 

  • Michler GH, Baltá-Calleja FJ (2012) Nano- and micromechanics of polymers: Structure modification and improvement of properties. Hanser, München, Cincinnati, Ohio

    Book  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2011) The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys Res Lett 38(13):n/a–n/a. doi:10.1029/2011GL047167

  • Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Oxford

    Google Scholar 

  • Murakami Y (2012) Material defects as the basis of fatigue design. Int J Fatigue 41:2–10. doi:10.1016/j.ijfatigue.2011.12.001

    Article  Google Scholar 

  • Nakamura K, Katayama K, Amano T (1973) Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. J Appl Polym Sci 17(4):1031–1041. doi:10.1002/app.1973.070170404

    Article  Google Scholar 

  • Nieder T, Bickel P, Musiol F (2015) Development of renewable energy sources in Germany 2014. www.erneuerbare-energien.de

  • Niemann G, Winter H (2003) Maschinenelemente: band 2: Getriebe allgemein, Zahnradgetriebe - Grundlagen, Stirnradgetriebe. Springer, Berlin

    Google Scholar 

  • Olsson E, Kreiss G (2005) A conservative level set method for two phase flow. J Comput Phys 210(1):225–246. doi:10.1016/j.jcp.2005.04.007

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49. doi:10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  • Rodrigues J (2005) Tecnologia mecânica: Tecnologia da deformação plástica. Escolar Editora, Lisboa

    Google Scholar 

  • Röthlingshöfer T (2012) Auslegungsmethodik zur Optimierung des Einsatzverhaltens von Beveloidverzahnungen. Dissertation, RWTH Aachen

    Google Scholar 

  • Rowan OK, Sisson RD (2009) Effect of alloy composition on carburizing performance of steel. J Phase Equilib Diffus 30(3):235–241. doi:10.1007/s11669-009-9500-7

    Article  Google Scholar 

  • Rudnizki J, Zeislmair B, Prahl U, Bleck W (2010) Prediction of abnormal grain growth during high temperature treatment. Comput Mater Sci 49(2):209–216. doi:10.1016/j.commatsci.2010.04.015

    Article  Google Scholar 

  • Sanchez-Palencia E (1983) Homogenization method for the study of composite media. In: Verhulst F (ed) Asymptotic analysis II, vol 985. Springer, Berlin, pp 192–214

    Chapter  Google Scholar 

  • Santillana MB (2013) Thermo-mechanical properties and cracking during solidification of thin slab cast steel. Delft University of Technology, Delft

    Google Scholar 

  • Sawatari C, Matsuo M (1986) Elastic modulus of isotactic polypropylene in the crystal chain direction as measured by X-ray diffraction. Macromolecules 19(10):2653–2656. doi:10.1021/ma00164a036

    Article  Google Scholar 

  • Schifferl H, Zamberger S, Jöller A (2012) Cost optimization by the modification of ally additions of heat-treatable engineering steels. HTM 67(4):251–256. doi:10.3139/105.110160

    Article  Google Scholar 

  • Schmidt I, Thies H (1989) Ingenieur-Werkstoffe 1(3/4):62–66

    Google Scholar 

  • Schmitz GJ, Benke S, Laschet G, Apel M, Prahl U, Fayek P, Konovalov S, Rudnizki J, Quade H, Freyberger S, Henke T, Bambach M, Rossiter EA, Jansen U, Eppelt U (2011) Towards integrative computational materials engineering of steel components. Prod Eng Res Devel 5(4):373–382. doi:10.1007/s11740-011-0322-1

    Article  Google Scholar 

  • Schmitz GJ, Prahl U (eds) (2012) Integrative computational materials engineering. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany

    Google Scholar 

  • Schmitz GJ et al (2015) Software solutions for ICME. JOM, 1–7

    Google Scholar 

  • Schmoeckel D, Hemyari D (1998) The realization of warm forging’s full potential. In: International conference on forging and related technology (ICFT’98), Birmingham, UK, 27–28 April 1998. Professional Engineering Publishing Limited, Bury St Edmonds, pp 295–310

    Google Scholar 

  • Schmoeckel D, Sheljaskow D (1994) Die Situation der Werkzeugwerkstoffe für die Halbwarmumformung in Deutschland, Darmstadt

    Google Scholar 

  • Schwerdtfeger K (1993) Metallurgie des Stranggießens. Verlag Stahleisen GmbH

    Google Scholar 

  • Scoonover TM, Arnson HL (1984) Hardenability of low- and medium-carbon Mn-Cr-Ni-Mo steels. J Heat Treat 3(3):183–192. doi:10.1007/BF02833260

    Article  Google Scholar 

  • Sellars CM, McTegart WJ (1966) On the mechanism of hot deformation. Acta Metall 14(9):1136–1138. doi:10.1016/0001-6160(66)90207-0

    Article  Google Scholar 

  • Spekowius M, Spina R, Hopmann C (2015) Mesoscale simulation of the solidification process in injection moulded parts. J Polym Eng. doi:10.1515/polyeng-2014-0223

    Google Scholar 

  • Spina R, Spekowius M, Dahlmann R, Hopmann C (2014) Analysis of polymer crystallization and residual stresses in injection molded parts. Int J Precis Eng Manuf 15(1):89–96. doi:10.1007/s12541-013-0309-2

    Article  Google Scholar 

  • Spina R, Spekowius M, Küsters K, Hopmann C (2013) Thermal simulation of polymer crystallization during post-filling. KEM 554–557:1699–1706. doi:10.4028/www.scientific.net/KEM.554-557.1699

    Article  Google Scholar 

  • Tartaglia JM, Eldis GT, Geissler JJ (1986) Hyperbolic secant method for predicting Jominy hardenability: an example using 0.2C-Ni-Cr-Mo steels. J Heat Treat 4(4):352–364. doi:10.1007/BF02833091

  • Tashiro K, Kobayashi M (1996) Molecular theoretical study of the intimate relationships between structure and mechanical properties of polymer crystals. Polymer 37(10):1775–1786. doi:10.1016/0032-3861(96)87293-4

    Article  Google Scholar 

  • Tashiro K, Kobayashi M, Tadokoro H (1992) Vibrational spectra and theoretical three-dimensional elastic constants of isotactic polypropylene crystal. An important role of anharmonic vibrations. Polym J 24(9):899–916. doi:10.1295/polymj.24.899

    Article  Google Scholar 

  • Tobie T (2001) Zur Grübchen- und Zahnfußtragfähigkeit einsatzgehärteter Zahnräder: Einflüsse aus Einsatzhärtungstiefe, Wärmebehandlung und Fertigung bei unterschiedlicher Baugröße. FZG, Lehrstuhl für Maschinenelemente, Forschungsstelle für Zahnräder und Getriebebau

    Google Scholar 

  • Tragfähigkeitsberechnung von Stirnrädern (DIN 3990)

    Google Scholar 

  • Tragfähigkeitsberechnung von Kegelrädern ohne Achsversatz (DIN 3991)

    Google Scholar 

  • Weibull W (1959) Zur Abhängigkeit der Festigkeit von der Probengröße. Ing Arch 28(1):360–362. doi:10.1007/BF00536130

    Article  MATH  Google Scholar 

  • Wienke S, Spekowius M, Dammer A, Da Mey, Hopmann C, Muller MS (2014) Towards an accurate simulation of the crystallisation process in injection moulded plastic components by hybrid parallelisation. Int J High Perform Comput Appl 28(3):356–367. doi:10.1177/1094342013511837

    Article  Google Scholar 

  • Wirth C (2009) Zur Tragfähigkeit von Kegelrad- und Hypoidgetrieben. Berichte aus dem Maschinenbau, vol 164. Shaker, Aachen

    Google Scholar 

  • Zheng R, Tanner RI, Wo DL, Fan X, Hadinata C, Costa FS, Kennedy PK, Zhu P, Edward G (2010) Modeling of flow-induced crystallization of colored polypropylene in injection molding. Korea-Aust Rheol J 22(3):151–162

    Google Scholar 

  • Zuber D (2008) Fusstragfähigkeit einsatzgehärteter Zahnräder unter Berücksichtigung lokaler Materialeigenschaften. Berichte aus der Produktionstechnik, vol 12. Shaker, Aachen

    Google Scholar 

  • Zuidema H, Peters GWM, Meijer HEH (2001) Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers. Macromol Theory Simul 10(5):447–460. doi:10.1002/1521-3919(20010601)10:5<447:AID-MATS447>3.0.CO;2-C

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Prahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bleck, W. et al. (2017). Integrated Computational Materials and Production Engineering (ICMPE). In: Brecher, C., Özdemir, D. (eds) Integrative Production Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47452-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47452-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47451-9

  • Online ISBN: 978-3-319-47452-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics