Skip to main content

Direct, Mold-Less Production Systems

  • Chapter
  • First Online:
Integrative Production Technology

Abstract

Additive Manufacturing (AM) technologies in general—and in particular, Selective Laser Melting (SLM)—are characterized by a fundamentally different relationship with respect to costs, lot size, and product complexity compared to conventional manufacturing processes. There is no increase of costs for small lot sizes (in contrast to mold-based technologies) and none for shape complexity either (in contrast to subtractive technologies). Thus, only the holistic development of a direct, mold-less production system that takes all relevant interdependencies along the product creation chain into account provides the full economic, ecologic and social benefits of AM technologies in future production. The following six subjects of the product creation chain were examined: (i) New business models and customer willingness to pay for AM parts are revealed. (ii) The Product Production System (PPS) was totally revised regarding the adoption of SLM technology into conventional manufacturing environment. (iii) The SLM manufacturing costs were examined regarding different machine configurations. (iv) A high-power SLM process was developed for enhancing the process productivity. (v) High manganese steel was qualified for the SLM process. (vi) Finally, two lattice structure types and a design methodology for customer parts were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson C (2008) The long tail: Why the future of business is selling less of more, 1, paperback edn. Hyperion, New York, NY

    Google Scholar 

  • Ashby M (2006) The properties of foams and lattices. Philos Trans R Soc A Math Phys Eng Sci 364(1838):15–30. doi:10.1098/rsta.2005.1678

    Article  MathSciNet  Google Scholar 

  • ASTM International (2015) Standard terminology for additive manufacturing technologies

    Google Scholar 

  • Baumers M (2012) Economic aspects of additive manufacturing: benefits, costs and energy consumption

    Google Scholar 

  • Baumers M, Dickens P, Tuck C, Hague R (2016) The cost of additive manufacturing: Machine productivity, economies of scale and technology-push. Technol Forecast Soc Chang 102:193–201

    Article  Google Scholar 

  • Bechthold L, Fischer V, Greul A, Hainzlmaier A, Hugenroth D, Ivanova L, Kroth K, Römer B, Sikorska E, Sitzmann V (2015) 3D printing—a qualitative assessment of applications, recent trends and the technology’s future potential: Studien zum deutschen innovations system. EFI, Berlin

    Google Scholar 

  • Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162. doi:10.1016/j.bushor.2011.11.003

    Article  MathSciNet  Google Scholar 

  • Bogers M, Hadar R, Bilberg A (2016) Additive manufacturing for consumer-centric business models: Implications for supply chains in consumer goods manufacturing. Technol Forecast Soc Chang 102:225–239. doi:10.1016/j.techfore.2015.07.024

    Article  Google Scholar 

  • Bohl A (2015) Kennlinien der Produkt- und Produktionskomplexität. Ergebnisse aus der Produktionstechnik, Band 8/2015. Apprimus Verlag, Aachen

    Google Scholar 

  • Brecher C (ed) (2011) Integrative Produktionstechnik für Hochlohnländer. Springer, Heidelberg (u.a.)

    Google Scholar 

  • Brecher C (ed) (2012) Integrative production technology for high-wage countries. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  • Bremen S, Buchbinder D, Meiners W, Wissenbach K (2011) Mit Selective Laser Melting auf dem Weg zur Serienproduktion? LTJ 8(6):24–28. doi:10.1002/latj.201190072

    Article  Google Scholar 

  • Bremen S, Meiners W, Diatlov A (2012) Selective laser melting: a manufacturing technology for the future? LTJ 9(2):33–38. doi:10.1002/latj.201290018

    Article  Google Scholar 

  • Brynjolfsson E, Hu Y, Simester D (2011) Goodbye pareto principle, hello long tail: the effect of search costs on the concentration of product sales. Manag Sci 57(8):1373–1386. doi:10.1287/mnsc.1110.1371

    Article  Google Scholar 

  • Buchbinder D, Schilling G, Meiners W, Pirch N, Wissenbach K (2011) Untersuchung zur Reduzierung des Verzugs durch Vorwärmung bei der Herstellung von Aluminiumbauteilen mittels SLM. RTejournal—Forum für Rapid Technologie. Online J 8:15

    Google Scholar 

  • Bültmann J, Merkt S, Hammer C, Hinke C, Prahl U (2015) Scalability of the mechanical properties of selective laser melting produced micro-struts. J Laser Appl 27(S2):S29206. doi:10.2351/1.4906392

    Article  Google Scholar 

  • Casalino G, Campanelli SL, Contuzzi N, Ludovico AD (2015) Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt Laser Technol 65:151–158. doi:10.1016/j.optlastec.2014.07.021

    Article  Google Scholar 

  • Coelho PS, Henseler J (2012) Creating customer loyalty through service customization. Eur J Mark 46(3/4):331–356. doi:10.1108/03090561211202503

    Article  Google Scholar 

  • Concept Laser GmbH (2015) Laser melting metal systems. http://www.concept-laser.de/en/industry/automotive/machines.html. Accessed 19 May 2016

  • DIN (2005) Zuverlässigkeitsmanagement - Teil 3-3: Anwendungsleitfaden – Lebenszykluskosten (60300-3-3)

    Google Scholar 

  • DIN (2008) Prüfung von metallischen Werkstoffen - Druckversuch an metallischen zellularen Werkstoffen DIN 50134 (50134)

    Google Scholar 

  • Eibl F (2014) Annual report 2014 Fraunhofer institute for laser technology 2014: SLM exposure design for easy scaling of productivity and building space, Aachen

    Google Scholar 

  • Eisenhut M, Langefeld B (2013) Additive manufacturing—a game changer for the manufacturing industry?. Roland Berger Strategy Consultants, München

    Google Scholar 

  • Elberse A (2008) Should you invest in the long tail? Harvard Bus Rev 86(7/8):88–96

    Google Scholar 

  • EOS GmbH (2015) EOS M 400: product information sheet. http://www.eos.info/m-solutions/download/system_datasheet_EOS_M_400.pdf. Accessed 19 May 2016

  • Forbes (2013) Full text: president Obama’s 2013 state of the union address. http://www.forbes.com/sites/beltway/2013/02/12/full-text-president-obamas-2013-state-of-the-union-address/. Accessed 29 Oct 2015

  • Franke N, Keinz P, Steger CJ (2009) Testing the value of customization: when do customers really prefer products tailored to their preferences? J Mark 73(5):103–121. doi:10.1509/jmkg.73.5.103

    Article  Google Scholar 

  • Franke N, Piller F (2004) Value creation by toolkits for user innovation and design: the case of the watch market. J Prod Innov Manage 21:401–415

    Article  Google Scholar 

  • Franke N, Schreier M (2010) Why customers value self-designed products: the importance of process effort and enjoyment*. J Prod Innov Manage 27(7):1020–1031. doi:10.1111/j.1540-5885.2010.00768.x

    Article  Google Scholar 

  • Franke N, Schreier M, Kaiser U (2010) The “i designed it myself” effect in mass customization. Manage Sci 56(1):125–140. doi:10.1287/mnsc.1090.1077

    Article  Google Scholar 

  • Gausemeier J (2013) Thinking ahead the future of additive manufacturing—innovation roadmapping of required advancements: Studie, Paderborn

    Google Scholar 

  • Gebhardt A (2012) Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing. Hanser, Munich

    Google Scholar 

  • Gebhardt A (2013) Generative Fertigungsverfahren: additive manufacturing und 3D Drucken für prototyping—tooling—Produktion. Carl Hanser Verlag GmbH & Co, KG, München

    Book  Google Scholar 

  • Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New York, NY

    Google Scholar 

  • Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd ed, 1st pbk. ed with corr. Cambridge solid state science series. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Gobrecht J (2009) Werkstofftechnik - Metalle, 3., überarb. Aufl. Oldenbourg Lehrbücher für Ingenieure. Oldenbourg, R, München

    Google Scholar 

  • Gordon ME, McKeage K, Fox MA (1998) Relationship marketing effectiveness: the role of involvement. Psychol Mark 15(5):443–459. doi:10.1002/(SICI)1520-6793(199808)15:5<443:AID-MAR3>3.0.CO;2-7

    Article  Google Scholar 

  • Grässel O, Frommeyer G (1998) Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater Sci Technol 14(12):1213–1217. doi:10.1179/mst.1998.14.12.1213

    Article  Google Scholar 

  • Guan K, Wang Z, Gao M, Li X, Zeng X (2013) Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater Des 50:581–586. doi:10.1016/j.matdes.2013.03.056

    Article  Google Scholar 

  • Gümrük R, Mines R (2013) Compressive behaviour of stainless steel micro-lattice structures. Int J Mech Sci 68:125–139. doi:10.1016/j.ijmecsci.2013.01.006

    Article  Google Scholar 

  • Haase C, Ingendahl T, Güvenç O, Bambach M, Bleck W, Molodov DA, Barrales-Mora LA (2016) On the applicability of recovery-annealed twinning-induced plasticity steels: potential and limitations. Mater Sci Eng A 649:74–84. doi:10.1016/j.msea.2015.09.096

    Article  Google Scholar 

  • Hao L, Raymont D, Yan C, Hussein A, Young P (2012) Design and additive manufacturing of cellular lattice structures. In: Bártolo P (ed) Innovative developments in virtual and physical prototyping: proceedings of the 5th international conference on advanced research and rapid prototyping, Leiria, Portugal, 28 September-1 October, 2011. CRC Press, Boca Raton, pp 249–254

    Google Scholar 

  • Holzweissig MJ, Taube A, Brenne F, Schaper M, Niendorf T (2015) Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting. Metall and Materi Trans B 46(2):545–549. doi:10.1007/s11663-014-0267-9

    Article  Google Scholar 

  • Hopkinson N, Hague RJM, Dickens PM (2006) Rapid manufacturing: an industrial revolution for the digital age. John Wiley, Chichester, England

    Google Scholar 

  • Huffman C, Kahn BE (1998) Variety for sale: mass customization or mass confusion? J Retail 74(4):491–513. doi:10.1016/S0022-4359(99)80105-5

    Article  Google Scholar 

  • Jägle EA, Choi P-P, van Humbeeck J, Raabe D (2014) Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J Mater Res 29(17):2072–2079. doi:10.1557/jmr.2014.204

    Article  Google Scholar 

  • Kaplan RS, Cooper R (1999) Prozesskostenrechnung als Managementinstrument. Campus-Verl, Frankfurt/Main, New York

    Google Scholar 

  • Kieviet A (2015) Implications of additive manufacturing on complexity management within supply chains in a production environment. Dissertation, University of Louisville

    Google Scholar 

  • Kleer R, Piller F (2013) Welfare effects of a radical process innovation: benefits of local production by users via 3D printing. Presented at the 73rd annual meeting of the academy of management, Orlando, FL

    Google Scholar 

  • Lampel J, Mintzberg H (1996) Customizing customization. Sloan Manag Rev 38(1):21–30

    Google Scholar 

  • Leary M, Merli L, Torti F, Mazur M, Brandt M (2014) Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater Des 63:678–690. doi:10.1016/j.matdes.2014.06.015

    Article  Google Scholar 

  • Lindemann U, Reichwald R, Zäh M (2006) Individualisierte Produkte – Komplexität beherrschen in Entwicklung und Produktion. Springer-Verlag, Berlin Heidelberg, Berlin, Heidelberg, VDI-Buch

    Book  Google Scholar 

  • Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. John Wiley & Sons, Indianapolis, Indiana

    Google Scholar 

  • Ma M, Wang Z, Gao M, Zeng X (2015) Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. J Mater Process Technol 215:142–150. doi:10.1016/j.jmatprotec.2014.07.034

    Article  Google Scholar 

  • Meiners W (1999) Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe. Als Ms. gedr. Berichte aus der Lasertechnik, Shaker, Aachen

    Google Scholar 

  • Merkt S (2016) Qualifizierung von generativ gefertigten Gitterstrukturen für maßgeschneiderte Bauteilfunktionen, RWTH Aachen

    Google Scholar 

  • Merle A, Chandon J-L, Roux E, Alizon F (2010) Perceived value of the mass-customized product and mass customization experience for individual consumers. Prod Oper Manag 19(5):503–514. doi:10.1111/j.1937-5956.2010.01131.x

    Article  Google Scholar 

  • Mertens A, Reginster S, Contrepois Q, Dormal T, Lemaire O, Lecomte-Beckers J (2014) Microstructures and mechanical properties of stainless steel AISI 316L processed by selective laser melting. MSF 783–786:898–903. doi:10.4028/www.scientific.net/MSF.783-786.898

    Article  Google Scholar 

  • Milgrom P, Roberts J (1990) The economics of modern manufacturing: technology, strategy, and organization. Am Econ Rev 80(3):511–528

    Google Scholar 

  • Mohles V, Facchini L, Vicente N, Lonardelli I, Magalini E, Robotti P, Molinari A (2010) Metastable Austenite in 17-4 precipitation-hardening stainless steel produced by selective laser melting. Adv Eng Mater 12(3):184–188. doi:10.1002/adem.200900259

    Article  Google Scholar 

  • Murr LE, Martinez E, Hernandez J, Collins S, Amato KN, Gaytan SM, Shindo PW (2012) Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting. J Mater Res Technol 1(3):167–177. doi:10.1016/S2238-7854(12)70029-7

    Article  Google Scholar 

  • Niendorf T, Brenne F (2013) Steel showing twinning-induced plasticity processed by selective laser melting—an additively manufactured high performance material. Mater Charact 85:57–63. doi:10.1016/j.matchar.2013.08.010

    Article  Google Scholar 

  • Over C (2003) Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mit “Selective Laser Melting”. Berichte aus der Lasertechnik, Shaker, Aachen

    Google Scholar 

  • Papadakis L, Loizou A, Risse J, Schrage J (2014) Numerical computation of component shape distortion manufactured by selective laser melting. Procedia CIRP 18:90–95. doi:10.1016/j.procir.2014.06.113

    Article  Google Scholar 

  • Piller F, Schoder D (1999) Mass customization und electronic commerce: Eine empirische Einschätzung zur Umsetzung in deutschen Unternehmen. Zeitschrift für Betriebswirtschaft 69(10):1111–1136

    Google Scholar 

  • Piller FT (2004) Mass customization: reflections on the state of the concept. Int J Flex Manuf Syst 16(4):313–334

    Article  MATH  Google Scholar 

  • Piller FT, Weller C, Kleer R (2015) Business models with additive manufacturing—opportunities and challenges from the perspective of economics and management. In: Brecher C (ed) Advances in production technology. Springer, Cham, pp 39–48

    Google Scholar 

  • Pine JB (1993) Mass customization. The new frontier of business competition. Harvard University Press, Boston, MA

    Google Scholar 

  • Rayna T, Striukova L (2014) The impact of 3D printing technologies on business model innovation. In: Benghozi P, Krob D, Lonjon A, Panetto H (eds) Digital enterprise design & management, vol 261. Springer International Publishing, Cham, pp 119–132

    Chapter  Google Scholar 

  • Rayna T, Striukova L (2016) From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technol Forecast Soc Chang 102:214–224

    Article  Google Scholar 

  • Rehme O (2007) Cellular design for laser freeform fabrication, Stuttgart

    Google Scholar 

  • Rehme O (2009) Cellular design for laser freeform fabrication, 1. Aufl. Schriftenreihe Lasertechnik, Bd. 4. Cuvillier, Göttingen

    Google Scholar 

  • Rehme O (2011) Additive manufacturing zellularer metallischer Strukturen

    Google Scholar 

  • Rickenbacher L, Spierings A, Wegener K (2013) An integrated cost-model for selective laser melting (SLM). Rapid Prototyping J 19(3):208–214. doi:10.1108/13552541311312201

    Article  Google Scholar 

  • Roland Berger Strategy Consultants (2013) Additive manufacturing: a game changer for the manufacturing industry? Roland Berger Studie

    Google Scholar 

  • Saeed-Akbari A, Schwedt A, Bleck W (2012) Low stacking fault energy steels in the context of manganese-rich iron-based alloys. Scripta Mater 66(12):1024–1029. doi:10.1016/j.scriptamat.2011.12.041

    Article  Google Scholar 

  • Schleifenbaum H, Diatlov A, Hinke C, Bültmann J, Voswinckel H (2011) Direct photonic production: Towards high speed additive manufacturing of individualized goods. Prod Eng Res Devel 5(4):359–371. doi:10.1007/s11740-011-0331-0

    Article  Google Scholar 

  • Schleifenbaum JH (2012) Verfahren und Maschine zur individualisierten Produktion mit high power selective laser melting, Zugl.: Aachen, Techn. Hochsch

    Google Scholar 

  • Schrage J (2016) Maschinenspezifische Kostentreiber bei der additiven Fertigung mittels Laser-Strahlschmelzen (LBM). In: Kniffka W, Eichmann M, Witt G (eds) Rapid.Tech—international trade show & conference for additive manufacturing: proceedings of the 13th Rapid.Tech conference erfurt, Germany, 14–16 June 2016. Hanser, Carl, München

    Google Scholar 

  • Schreier M (2006) The value increment of mass-customized products: an empirical assessment. J Consum Behav 5(4):317–327. doi:10.1002/cb.183

    Article  Google Scholar 

  • Schuh G, Arnoscht J, Bohl A (2013) Integriertes controlling von Produkt- und Produktionskomplexität. Controlling : Zeitschrift für erfolgsorientierte Unternehmenssteuerung 8(25):450–457

    Article  Google Scholar 

  • Schuh G, Behr M, Brecher C, Bührig-Polaczek A, Michaeli W, Schmitt R, Arnoscht J, Bohl A, Buchbinder D, Bültmann J, Diatlov A, Elgeti S, Herfs W, Hinke C, Karlberger A, Kupke D, Lenders M, Nußbaum C, Probst M, Queudeville Y, Quick J, Schleifenbaum H, Vorspel-Rüter M, Windeck C (2012) Individualised production. In: Brecher C (ed) Integrative production technology for high-wage countries. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 77–239

    Chapter  Google Scholar 

  • Schuh G, Potente T, Wesch-Potente C, Weber AR, Prote J-P (2014) Collaboration mechanisms to increase productivity in the context of industrie 4.0. Procedia CIRP 19:51–56. doi:10.1016/j.procir.2014.05.016

    Article  Google Scholar 

  • Shen Y, Cantwell WJ, Mines RA, Ushijima K (2012) The properties of lattice structures manufactured using selective laser melting. AMR 445:386–391. doi:10.4028/scientific5/AMR.445.386

    Google Scholar 

  • Shifeng W, Shuai L, Qingsong W, Yan C, Sheng Z, Yusheng S (2014) Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J Mater Process Technol 214(11):2660–2667. doi:10.1016/j.jmatprotec.2014.06.002

    Article  Google Scholar 

  • SLM Solutions Group AG (2015) SLM 500 HL selective laser melting system: product information sheet. http://slm-solutions.com/sites/default/files/attachment/page/2016/01/slm_500_english.pdf. Accessed 19 May 2016

  • Steiner F (2014) Solution space development for mass customization: Impact of continuous product change on production ramp-up. Schriftenreihe innovative betriebswirtschaftliche Forschung und Praxis, vol 413. Kovač, Hamburg

    Google Scholar 

  • The Economist (2011) Print me a stradivarius: how a new manufacturing technology will change the world. The Economist

    Google Scholar 

  • Thomas DS, Gilbert SW (2014) Costs and cost effectiveness of additive manufacturing. National Institute of Standards and Technology

    Google Scholar 

  • Ulrich KT (2011) Design: creation of artifacts in society. University of Pennsylvania, Pennsylvania

    Google Scholar 

  • Von Hippel E (2006) Democratizing innovation, 1. MIT Press paperback ed. MIT Press, Cambridge, Mass

    Google Scholar 

  • Wang Z, Chen L, Zhao X, Zhou W (2014) Modularity in building mass customization capability: the mediating effects of customization knowledge utilization and business process improvement. Technovation 34(11):678–687. doi:10.1016/j.technovation.2014.09.002

    Article  Google Scholar 

  • Wei Q, Li S, Han C, Li W, Cheng L, Hao L, Shi Y (2015) Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: Microstructure, element distribution, crack and mechanical properties. J Mater Process Technol 222:444–453. doi:10.1016/j.jmatprotec.2015.02.010

    Article  Google Scholar 

  • Weller C (2015) Economic perspectives on 3D printing. Dissertation, RWTH Aachen University

    Google Scholar 

  • Weller C, Kleer R, Piller FT (2015a) Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int J Prod Econ 164:43–56. doi:10.1016/j.ijpe.2015.02.020

    Article  Google Scholar 

  • Weller C, Kleer R, Piller FT (2015b) Economic value of digitized manufacturing: product customization with 3D printing. Presented at the 75th annual meeting of the academy of management, Vancouver, BC

    Google Scholar 

  • Wohlers T (2015) Wohlers Report 2015: 3D printing and additive manufacturing state of the industry; annual worldwide progress report. Fort Collins, Wohlers Associates

    Google Scholar 

  • Yadroitsev I, Smurov I (2010) Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys Procedia 5:551–560. doi:10.1016/j.phpro.2010.08.083

    Article  Google Scholar 

  • Yasa E, Kempen K, Kruth J-P, Thijs L, van Humbeeck J (2010) Microstructure and mechanical properties of maraging steel 300 after selective laser melting. In: SFF symposium, Solid Freeform Fabrication, 2010, Austin

    Google Scholar 

  • Zaichkowsky JL (1985) Measuring the involvement construct. J Consum Res 12(3):341. doi:10.1086/208520

    Article  Google Scholar 

  • Zhang B, Dembinski L, Coddet C (2013) The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater Sci Eng, A 584:21–31. doi:10.1016/j.msea.2013.06.055

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhart Poprawe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Poprawe, R. et al. (2017). Direct, Mold-Less Production Systems. In: Brecher, C., Özdemir, D. (eds) Integrative Production Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47452-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47452-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47451-9

  • Online ISBN: 978-3-319-47452-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics