Skip to main content

Nonlinear Controller of Arachnid Mechanism Based on Theo Jansen

  • Conference paper
  • First Online:
Social Robotics (ICSR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9979))

Included in the following conference series:

Abstract

This paper presents a new motion controller for arachnid mechanism based on Theo Jansen that is capable of performing path-following tasks. The proposed controller has the advantage of simultaneously performing the approximation of the arachnid robot to the proposed path by the shortest route and limiting its velocity. Furthermore, it is presents the kinematic modeling of the arachnid mechanism where it is considered that its mass center is located at the legs’ axis center of the robot. In addition, the stability is proven through Lyapunov’s method. To validate the proposed control algorithm, experimental results are included and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haosong, Y., Weihai, C., Xingming, W., Jingbing, Z.: Kinect based real time obstacle detection for legged robots in complex environments. In: IEEE International Conference on Industrial Electronics and Applications (ICIEA), pp. 205–210, Melbourne (2013)

    Google Scholar 

  2. Andaluz, V.H., et al.: Unity3D virtual animation of robots with coupled and uncoupled mechanism. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 89–101. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40621-3_6

    Chapter  Google Scholar 

  3. YuKang, L., YuMing, Z., Bo, F., Ruigang, Y.: Predictive control for robot arm teleoperation. In: IEEE International Conference on Industrial Electronics Society IECON, pp. 3693–3698, Viena (2013)

    Google Scholar 

  4. Esmaili, P., Haron, H.: Adaptive synchronous artificial neural network based PI-type sliding mode control on two robot manipulators. IEEE International Conference on Computer, Communication, and Control Technology (I4CT 2015), pp. 515–519, Malaysia (2015)

    Google Scholar 

  5. Luo, R.C., Huang, K.C., Alami, R.: Online trajectory tracking based on model predictive control for service robot. IEEE International Conference on Automation Science and Engineering (CASE), pp. 1238–1243, Taiwan (2014)

    Google Scholar 

  6. Velasco, M., Alvarez, A., Rivera, G.: Discrete-time control of an omnidirectional mobile robot subject to transport delay. In: IEEE International Conference on American Control, pp. 2171–2176, New York (2007)

    Google Scholar 

  7. Okumura, J., Takei, T., Tsubouchi, T.: Navigation in indoor environment by an autonomous unicycle robot with wide-type wheel. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 154–159, Taiwan (2010)

    Google Scholar 

  8. Melik, N., Slimane, N.: Autonomous navigation with obstacle avoidance of tricycle mobile robot based on fuzzy controller. In: IEEE International Conference on Electrical Engineering (ICEE), pp. 1–4, Algeria (2015)

    Google Scholar 

  9. Doosthoseini, M., kadkhodaei, B., Korayem, M., Shafei, A.: An experimental electronic interface design for a Two-link elastic robotic arm. In: IEEE International Conference on Information, Communication and Automation Technologies (ICAT), pp. 1–4, Bosnia and Herzegovina (2013)

    Google Scholar 

  10. Ames, A.D.: Human-inspired control of bipedal walking robots. In: IEEE International Conference on transactions on automatic control, vol. 59, no. 5, pp. 115–1130 (2014)

    Google Scholar 

  11. Ollervides, J., Orrante-Sakanassi, J., Santibáñez, V., Dzul, A.: Navigation control system of walking hexapod robot. IEEE International Conference on Ninth Electronics, Robotics and Automotive Mechanics, pp. 60–65 (2012)

    Google Scholar 

  12. Kurisu, M.: A study on teleoperation system for a hexapod robot development of a prototype platform. IEEE International Conference on Mechatronics and Automation, pp. 135–141, China (2011)

    Google Scholar 

  13. Jansen, T.: The Great Pretender. 010 Publishers, Rotterdam (2007)

    Google Scholar 

  14. Moldovan, F., Dolga, V., Pop, C.: Kinetostatic analysis of an articulated walking mechanism. In: Lovasz, E.-C., Corves, B. (eds.) Mechanisms, Transmissions and Applications. Mechanisms and Machine Science, vol. 3, pp. 103–110. Springer, Netherlands (2011)

    Chapter  Google Scholar 

  15. Ruan, Q., Wu, J.X., Zhou, S.H., Yao, Y.A.: Fluctuation Compensation of a Multi-legged Walking Platform Using Cam Mechanism, pp. 1–5. IFToMM World Congress, Taiwan (2015)

    Google Scholar 

  16. Nansai, S., Iwase, M., Elara, M.R.: Energy based position control of Jansen walking robot. IEEE International Conference on Systems, Man, and Cybernetics, pp. 1241–1246 (2013)

    Google Scholar 

  17. Nansaia, S., Elarab, M.R., Iwasea, M.: Dynamic analysis and modeling of Jansen mechanism. In: ELSEVIER International Conference on Design and Manufacturing, IConDM, pp. 1562–1571 (2013)

    Google Scholar 

  18. Tong, S., Li, H.-X.: Fuzzy adaptive sliding-mode control for MIMO. IEEE Trans. Fuzzy Syst. 11(3), 354–360 (2003)

    Article  Google Scholar 

  19. Parekh, B.J., Thakkar, P.N., Tambe, M.N.: Design and analysis of Theo Jansen’s mechanism based sports ground (pitch) marking robot. In: Annual IEEE India Conference (INDICON), pp. 1–5 (2014)

    Google Scholar 

  20. Honda, K., Kajiwara, Y., Karube, S., Takahashi, K.: Walking mechanism for a Lion-type robot. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 3403–3406, USA (2014)

    Google Scholar 

  21. Ortiz, J.S., Andaluz, V.H., Rivas, D., Sánchez, J.S., Espinosa, E.G.: Human-wheelchair system controlled by through brain signals. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds.) ICIRA 2016. LNCS (LNAI), vol. 9835, pp. 211–222. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43518-3_21

    Chapter  Google Scholar 

  22. SolidWorks Corporation, “Conceptos básicos de SolidWorks Piezas y ensamblajes” (2006)

    Google Scholar 

  23. Robotis: http://support.robotis.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Andaluz, V.H. et al. (2016). Nonlinear Controller of Arachnid Mechanism Based on Theo Jansen . In: Agah, A., Cabibihan, JJ., Howard, A., Salichs, M., He, H. (eds) Social Robotics. ICSR 2016. Lecture Notes in Computer Science(), vol 9979. Springer, Cham. https://doi.org/10.1007/978-3-319-47437-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47437-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47436-6

  • Online ISBN: 978-3-319-47437-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics