Infrared Thermography: A Possible Role in Psychophysiology of Sport?

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Infrared thermography (IRT) is an upcoming, promising methodology in the field of psychophysiology. Mental and emotional components of behavior play an important role in the determination of human performance in sporting competition scenario. Driven by sympathetic nerves activity, affective and emotional states derive from muscular activity, skin blood flow and perspiration patterns in specific body parts. The goal of this chapter is to introduce assessment of emotional states and computational psychophysiology through thermal infrared imaging in sport and exercise.


Autonomic Nervous System Skin Temperature Galvanic Skin Response Skin Blood Flow Infrared Thermography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hanin YL (2000) Emotions in sport. Human Kinetics, ChampaignGoogle Scholar
  2. 2.
    Zaichkowsky L (2012) Psychophysiology and neuroscience in sport: introduction to the special issue. J Clin Sport Psychol 6:1CrossRefGoogle Scholar
  3. 3.
    Sternbach RA (1966) Principles of psychophysiology: an introductory text and readings. Academic Press, New YorkGoogle Scholar
  4. 4.
    Andreassi JL (2000) Psychophysiology: human behavior & physiological response. Psychology Press, MahwahGoogle Scholar
  5. 5.
    Green E, Green A, Walters ED (1999) Voluntary control of internal states: psychological and physiological. Subtle Energ Energy Med 10:71–88Google Scholar
  6. 6.
    Neiss R (1988) Reconceptualizing arousal: psychobiological states in motor performance. Psychol Bull 103:345–366CrossRefGoogle Scholar
  7. 7.
    Schwaberger G (1987) Heart rate, metabolic and hormonal responses to maximal psycho-emotional and physical stress in motor car racing drivers. Int Arch Occup Environ Health 59:579–604CrossRefGoogle Scholar
  8. 8.
    Robazza C, Bortoli L, Nougier V (1999) Emotions, heart rate and performance in archery. A case study. J Sports Med Phys Fitness 39:169–176Google Scholar
  9. 9.
    Hynynen E, Konttinen N, Rusko H (2009) Heart rate variability and stress hormones in novice and experienced parachutists anticipating a jump. Aviat Space Environ Med 80:976–980CrossRefGoogle Scholar
  10. 10.
    Falk B, Bar-Eli M (1995) The psycho-physiological response to parachuting among novice and experienced parachutists. Aviat Space Environ Med 66:114–117Google Scholar
  11. 11.
    Blumenstein B, Bar-Eli M, Tenenbaum G (2002) Brain and body in sport and exercise: biofeedback applications in performance enhancement. Wiley, ChichesterGoogle Scholar
  12. 12.
    Schwartz MS, Andrasik F (2016) Biofeedback, a practitioner’s guide, 4th edn. Guilford Publications, New YorkGoogle Scholar
  13. 13.
    Birbaumer N, Kimmel HD (1979) Biofeedback and self-regulation. Wiley, HillsdaleGoogle Scholar
  14. 14.
    Sandweiss JH, Wolf SL (2013) Biofeedback and sports science. Springer Science & Business Media, New YorkGoogle Scholar
  15. 15.
    Donald M, Werthner P (2015) Special Issue: evidence-based applications of biofeedback and neurofeedback in sport. Biofeedback 43:51–53Google Scholar
  16. 16.
    Petruzzello SJ, Landers DM, Salazar W (1991) Biofeedback and sport/exercise performance: applications and limitations. Behav Ther 22:379–392CrossRefGoogle Scholar
  17. 17.
    Pusenjak N, Grad A, Tusak M et al (2015) Can biofeedback training of psychophysiological responses enhance athletes’ sport performance? a practitioner’s perspective. Phys Sportsmed 43:287–299. doi: 10.1080/00913847.2015.1069169 CrossRefGoogle Scholar
  18. 18.
    Zaichkowsky LD, Fuchs CZ (1988) Biofeedback applications in exercise and athletic performance. Exerc Sport Sci Rev 16:381–421CrossRefGoogle Scholar
  19. 19.
    Vickers JN, Williams AM (2007) Performing under pressure: the effects of physiological arousal, cognitive anxiety, and gaze control in biathlon. J Mot Behav 39:381–394. doi: 10.3200/JMBR.39.5.381-394 CrossRefGoogle Scholar
  20. 20.
    Wallace HM, Baumeister RF, Vohs KD (2005) Audience support and choking under pressure: a home disadvantage? J Sports Sci 23:429–438. doi: 10.1080/02640410400021666 CrossRefGoogle Scholar
  21. 21.
    Williams J (2009) Applied sport psychology: personal growth to peak performance. McGraw-Hill Education, New YorkGoogle Scholar
  22. 22.
    Park JL, Fairweather MM, Donaldson DI (2015) Making the case for mobile cognition: EEG and sports performance. Neurosci Biobehav Rev 52:117–130. doi: 10.1016/j.neubiorev.2015.02.014 CrossRefGoogle Scholar
  23. 23.
    Paul M, Garg K (2012) The effect of heart rate variability biofeedback on performance psychology of basketball players. Appl Psychophysiol Biofeedback 37:131–144. doi: 10.1007/s10484-012-9185-2 CrossRefGoogle Scholar
  24. 24.
    Rainoldi A, Moritani T, Boccia G (2016) EMG in exercise physiology and sports. In: Merletti R Farina D (eds) Surface electromyography physiology, engineering, and applications. Wiley, New York, pp 501–539Google Scholar
  25. 25.
    Giggins OM, Persson UM, Caulfield B (2013) Biofeedback in rehabilitation. J Neuroeng Rehabil 10:60. doi: 10.1186/1743-0003-10-60 CrossRefGoogle Scholar
  26. 26.
    Blumenstein B, Bar-Eli M, Tenenbaum G (1995) The augmenting role of biofeedback: effects of autogenic, imagery and music training on physiological indices and athletic performance. J Sports Sci 13:343–354. doi: 10.1080/02640419508732248 CrossRefGoogle Scholar
  27. 27.
    Carlson NR, Birkett MA (2016) Physiology of behavior. Pearson Education, Upper Saddle RiverGoogle Scholar
  28. 28.
    Schlager O, Gschwandtner ME, Herberg K et al (2010) Correlation of infrared thermography and skin perfusion in Raynaud patients and in healthy controls. Microvasc Res 80:54–57. doi: 10.1016/j.mvr.2010.01.010 CrossRefGoogle Scholar
  29. 29.
    Swain ID, Grant LJ (1989) Methods of measuring skin blood flow. Phys Med Biol 34:151–175CrossRefGoogle Scholar
  30. 30.
    Kappes BM, Chapman SJ (1984) The effects of indoor versus outdoor thermal biofeedback training in cold-weather sports. J Sport Psychol 6:305–311CrossRefGoogle Scholar
  31. 31.
    Kistler A, Mariauzouls C, von Berlepsch K (1998) Fingertip temperature as an indicator for sympathetic responses. Int J Psychophysiol Off J Int Organ Psychophysiol 29:35–41Google Scholar
  32. 32.
    Keefe FJ, Surwit RS, Pilon RN (1980) Biofeedback, autogenic training, and progressive relaxation in the treatment of Raynaud’s disease: a comparative study. J Appl Behav Anal 13:3–11. doi: 10.1901/jaba.1980.13-3 CrossRefGoogle Scholar
  33. 33.
    Khazan IZ (2013) The clinical handbook of biofeedback: a step-by-step guide for training and practice with mindfulness. Wiley, New YorkGoogle Scholar
  34. 34.
    Donald MW, Hovmand J (1981) Autoregulation of skin temperature with feedback-assisted relaxation of the target limb, and controlled variation in local air temperature. Percept Mot Skills 53:799–809. doi: 10.2466/pms.1981.53.3.799 CrossRefGoogle Scholar
  35. 35.
    Pavlidis I, Levine J, Baukol P (2001) Thermal image analysis for anxiety detection. In: Proceedings of 2001 international conference on image processing. IEEE, pp 315–318Google Scholar
  36. 36.
    Ioannou S, Gallese V, Merla A (2014) Thermal infrared imaging in psychophysiology: potentialities and limits. Psychophysiology 51:951–963. doi: 10.1111/psyp.12243 CrossRefGoogle Scholar
  37. 37.
    Merla A (2014) Thermal expression of intersubjectivity offers new possibilities to human-machine and technologically mediated interactions. Front Psychol 5:802. doi: 10.3389/fpsyg.2014.00802 CrossRefGoogle Scholar
  38. 38.
    Ioannou S, Ebisch S, Aureli T et al (2013) The autonomic signature of guilt in children: a thermal infrared imaging study. PLoS ONE 8:e79440. doi: 10.1371/journal.pone.0079440 ADSCrossRefGoogle Scholar
  39. 39.
    Garbey M, Sun N, Merla A, Pavlidis I (2007) Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. IEEE Trans Biomed Eng 54:1418–1426CrossRefGoogle Scholar
  40. 40.
    Merla A, Romani GL (2007) Thermal signatures of emotional arousal: a functional infrared imaging study. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 247–249Google Scholar
  41. 41.
    Di Giacinto A, Brunetti M, Sepede G et al (2014) Thermal signature of fear conditioning in mild post traumatic stress disorder. Neuroscience 266:216–223. doi: 10.1016/j.neuroscience.2014.02.009 CrossRefGoogle Scholar
  42. 42.
    Shastri D, Merla A, Tsiamyrtzis P, Pavlidis I (2009) Imaging facial signs of neurophysiological responses. IEEE Trans Biomed Eng 56:477–484CrossRefGoogle Scholar
  43. 43.
    Engert V, Merla A, Grant JA et al (2014) Exploring the use of thermal infrared imaging in human stress research. PLoS ONE 9:e90782. doi: 10.1371/journal.pone.0090782 ADSCrossRefGoogle Scholar
  44. 44.
    Hines EA, Brown GE (1932) A standard stimulus for measuring vasomotor reactions: its application in the study of hypertension. In: Proceedings of Staff Meet Mayo Clinic, p 332Google Scholar
  45. 45.
    Kirschbaum C, Pirke KM, Hellhammer DH (1993) The “trier social stress test”—a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28:76–81CrossRefGoogle Scholar
  46. 46.
    Khan MM, Ward RD, Ingleby M (2009) Classifying pretended and evoked facial expressions of positive and negative affective states using infrared measurement of skin temperature. ACM Trans Appl Percept TAP 6:6Google Scholar
  47. 47.
    Nhan BR, Chau T (2010) Classifying affective states using thermal infrared imaging of the human face. IEEE Trans Biomed Eng 57:979–987. doi: 10.1109/TBME.2009.2035926 CrossRefGoogle Scholar
  48. 48.
    Kuraoka K, Nakamura K (2011) The use of nasal skin temperature measurements in studying emotion in macaque monkeys. Physiol Behav 102:347–355. doi: 10.1016/j.physbeh.2010.11.029 CrossRefGoogle Scholar
  49. 49.
    Nakanishi R, Imai-Matsumura K (2008) Facial skin temperature decreases in infants with joyful expression. Infant Behav Dev 31:137–144. doi: 10.1016/j.infbeh.2007.09.001 CrossRefGoogle Scholar
  50. 50.
    Johnson J, Minson CT, Kellogg DL (2011) Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Comprehensive physiologyGoogle Scholar
  51. 51.
    Vianna DML, Carrive P (2005) Changes in cutaneous and body temperature during and after conditioned fear to context in the rat. Eur J Neurosci 21:2505–2512. doi: 10.1111/j.1460-9568.2005.04073.x CrossRefGoogle Scholar
  52. 52.
    Vainer BG (2005) FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans. Phys Med Biol 50:R63. doi: 10.1088/0031-9155/50/23/R01 ADSCrossRefGoogle Scholar
  53. 53.
    Anbar M (2002) Assessment of physiologic and pathologic radiative heat dissipation using dynamic infrared imaging. Ann NY Acad Sci 972:111–118ADSCrossRefGoogle Scholar
  54. 54.
    Manini B, Cardone D, Ebisch SJH et al (2013) Mom feels what her child feels: thermal signatures of vicarious autonomic response while watching children in a stressful situation. Front Hum Neurosci 7:299. doi: 10.3389/fnhum.2013.00299 CrossRefGoogle Scholar
  55. 55.
    Cardone D, Pinti P, Merla A (2015) Thermal infrared imaging-based computational psychophysiology for psychometrics. Comput Math Methods Med 2015:984353. doi: 10.1155/2015/984353 CrossRefGoogle Scholar
  56. 56.
    Wagner HL (1988) Social psychophysiology and emotion: theory and clinical applications. John Wiley & Sons Australia Limited, MiltonGoogle Scholar
  57. 57.
    Laine CM, Spitler KM, Mosher CP, Gothard KM (2009) Behavioral triggers of skin conductance responses and their neural correlates in the primate amygdala. J Neurophysiol 101:1749–1754. doi: 10.1152/jn.91110.2008 CrossRefGoogle Scholar
  58. 58.
    Amiez C, Procyk E, Honoré J et al (2003) Reward anticipation, cognition, and electrodermal activity in the conditioned monkey. Exp Brain Res 149:267–275. doi: 10.1007/s00221-002-1353-9 CrossRefGoogle Scholar
  59. 59.
    Kreibig SD (2010) Autonomic nervous system activity in emotion: a review. Biol Psychol 84:394–421. doi: 10.1016/j.biopsycho.2010.03.010 CrossRefGoogle Scholar
  60. 60.
    Nakayama K, Goto S, Kuraoka K, Nakamura K (2005) Decrease in nasal temperature of rhesus monkeys (Macaca mulatta) in negative emotional state. Physiol Behav 84:783–790. doi: 10.1016/j.physbeh.2005.03.009 CrossRefGoogle Scholar
  61. 61.
    Chekmenev SY, Farag AA, Essock EA (2007) Thermal imaging of the superficial temporal artery: an arterial pulse recovery model. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE, pp 1–6Google Scholar
  62. 62.
    Sun N, Pavlidis I, Garbey M, Fei J (2006) Harvesting the thermal cardiac pulse signal. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 569–576Google Scholar
  63. 63.
    Schmid C, Soatto S, Tomasi C (2006) 2006 IEEE computer society conference on computer vision and pattern recognition workshops: CVPR workshops. IEEE, PiscatawayGoogle Scholar
  64. 64.
    Murthy R, Pavlidis I (2006) Noncontact measurement of breathing function. IEEE Eng Med Biol Mag Q Mag Eng Med Biol Soc 25:57–67CrossRefGoogle Scholar
  65. 65.
    Lewis GF, Gatto RG, Porges SW (2011) A novel method for extracting respiration rate and relative tidal volume from infrared thermography. Psychophysiology 48:877–887. doi: 10.1111/j.1469-8986.2010.01167.x CrossRefGoogle Scholar
  66. 66.
    Murthy JN, van Jaarsveld J, Fei J et al (2009) Thermal infrared imaging: a novel method to monitor airflow during polysomnography. Sleep 32:1521–1527Google Scholar
  67. 67.
    Merla A, Di Donato L, Romani GL et al (2008) Comparison of thermal infrared and laser doppler imaging in the assessment of cutaneous tissue perfusion in scleroderma patients and healthy controls. Int J Immunopathol Pharmacol 21:679–686Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoMilanItaly
  2. 2.Infrared Imaging Lab, ITAB-Institute of Advanced Biomedical Technologies and Department of Neuroscience, Imaging and Clinical SciencesUniversity “G. d’Annunzio” - Chieti-PescaraChietiItaly

Personalised recommendations