The Use of Infrared Thermography in the Study of Sport and Exercise Physiology

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Infrared thermography (IRT) is considered an upcoming, promising methodology in the field of exercise physiology. Skin temperature distribution derives from muscular activity, skin blood flow as well as perspiration patterns in specific body parts. This chapter aims to provide a general overview on the literature about the study of the skin temperature response to exercise assessed by means of IRT and its relationship with other thermoregulatory variables, exercise characteristics and performance factors.


Skin Temperature Resistance Exercise Core Temperature Skin Blood Flow Sweat Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lim CL, Byrne C, Lee JK (2008) Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann Acad Med Singapore 37:347–353Google Scholar
  2. 2.
    Charkoudian N (2016) Human thermoregulation from the autonomic perspective. Auton Neurosci Basic Clin 196:1–2. doi: 10.1016/j.autneu.2016.02.007 CrossRefGoogle Scholar
  3. 3.
    González-Alonso J (2012) Human thermoregulation and the cardiovascular system. Exp Physiol 97:340–346. doi: 10.1113/expphysiol.2011.058701 CrossRefGoogle Scholar
  4. 4.
    Nybo L (2010) Cycling in the heat: performance perspectives and cerebral challenges. Scand J Med Sci Sports 20(Suppl 3):71–79. doi: 10.1111/j.1600-0838.2010.01211.x CrossRefGoogle Scholar
  5. 5.
    Charkoudian N (2010) Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol Bethesda Md 1985(109):1221–1228. doi: 10.1152/japplphysiol.00298.2010 Google Scholar
  6. 6.
    Kenney WL, Johnson JM (1992) Control of skin blood flow during exercise. Med Sci Sports Exerc 24:303–312CrossRefGoogle Scholar
  7. 7.
    Cramer MN, Jay O (2016) Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci Basic Clin 196:3–13. doi: 10.1016/j.autneu.2016.03.001 CrossRefGoogle Scholar
  8. 8.
    Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol 71:28–55. doi: 10.1016/j.infrared.2015.02.007 ADSCrossRefGoogle Scholar
  9. 9.
    González-Alonso J, Teller C, Andersen SL et al (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol Bethesda Md 1985 86:1032–1039Google Scholar
  10. 10.
    Nielsen B, Savard G, Richter EA et al (1990) Muscle blood flow and muscle metabolism during exercise and heat stress. J Appl Physiol 69:1040–1046Google Scholar
  11. 11.
    Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97:327–332. doi: 10.1113/expphysiol.2011.061002 CrossRefGoogle Scholar
  12. 12.
    Nielsen B, Hales JR, Strange S et al (1993) Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 460:467–485CrossRefGoogle Scholar
  13. 13.
    Nybo L, Møller K, Volianitis S et al (2002) Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol 93:58–64CrossRefGoogle Scholar
  14. 14.
    Nybo L, Nielsen B (2001) Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol 91:1055–1060Google Scholar
  15. 15.
    Galloway SD, Maughan RJ (1997) Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 29:1240–1249CrossRefGoogle Scholar
  16. 16.
    Priego Quesada JI, Martínez N, Salvador Palmer R et al (2016) Effects of the cycling workload on core and local skin temperatures. Exp Therm Fluid Sci 77:91–99. doi: 10.1016/j.expthermflusci.2016.04.008 CrossRefGoogle Scholar
  17. 17.
    Fujii N, Honda Y, Komura K et al (2014) Effect of voluntary hypocapnic hyperventilation on the relationship between core temperature and heat loss responses in exercising humans. J Appl Physiol 117:1317–1324. doi: 10.1152/japplphysiol.00334.2014 CrossRefGoogle Scholar
  18. 18.
    Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN (2010) Mechanisms of aerobic performance impairment with heat stress and dehydration. J Appl Physiol 109:1989–1995. doi: 10.1152/japplphysiol.00367.2010 CrossRefGoogle Scholar
  19. 19.
    Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. doi: 10.1016/j.jtherbio.2014.04.002 CrossRefGoogle Scholar
  20. 20.
    Torii M, Yamasaki M, Sasaki T, Nakayama H (1992) Fall in skin temperature of exercising man. Br J Sports Med 26:29–32CrossRefGoogle Scholar
  21. 21.
    Kenny GP, Reardon FD, Zaleski W et al (2003) Muscle temperature transients before, during, and after exercise measured using an intramuscular multisensor probe. J Appl Physiol 94:2350–2357. doi: 10.1152/japplphysiol.01107.2002 CrossRefGoogle Scholar
  22. 22.
    Saltin B, Gagge AP, Stolwijk JA (1970) Body temperatures and sweating during thermal transients caused by exercise. J Appl Physiol 28:318–327Google Scholar
  23. 23.
    Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385CrossRefGoogle Scholar
  24. 24.
    Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. doi: 10.1007/s00421-010-1744-8 CrossRefGoogle Scholar
  25. 25.
    Childs PRN (2001) Practical temperature measurement. Butterworth-HeinemannGoogle Scholar
  26. 26.
    Smith ADH, Crabtree DR, Bilzon JLJ, Walsh NP (2010) The validity of wireless iButtons and thermistors for human skin temperature measurement. Physiol Meas 31:95–114. doi: 10.1088/0967-3334/31/1/007 CrossRefGoogle Scholar
  27. 27.
    James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. doi: 10.1016/j.jtherbio.2014.08.010 CrossRefGoogle Scholar
  28. 28.
    de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189CrossRefGoogle Scholar
  29. 29.
    Niedermann R, Wyss E, Annaheim S et al (2013) Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol 58:7–15. doi: 10.1007/s00484-013-0687-2 CrossRefGoogle Scholar
  30. 30.
    Priego Quesada JI, Martínez Guillamón N, Ortiz Cibrián, de Anda RM et al (2015) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi: 10.1016/j.infrared.2015.07.008 CrossRefGoogle Scholar
  31. 31.
    Buono MJ, Jechort A, Marques R et al (2007) Comparison of infrared versus contact thermometry for measuring skin temperature during exercise in the heat. Physiol Meas 28:855–859. doi: 10.1088/0967-3334/28/8/008 CrossRefGoogle Scholar
  32. 32.
    Psikuta A, Niedermann R, Rossi RM (2013) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol 1–9Google Scholar
  33. 33.
    Tyler CJ (2011) The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol Meas 32:1541–1547. doi: 10.1088/0967-3334/32/10/003 CrossRefGoogle Scholar
  34. 34.
    Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19:531–533Google Scholar
  35. 35.
    Ammer K (2009) Does neuromuscular thermography record nothing else but an infrared sympathetic skin response? Thermol Int 19:107–108Google Scholar
  36. 36.
    Balci GA, Basaran T, Colakoglu M (2016) Analysing visual pattern of skin temperature during submaximal and maximal exercises. Infrared Phys Technol 74:57–62. doi: 10.1016/j.infrared.2015.12.002 ADSCrossRefGoogle Scholar
  37. 37.
    Ferreira JJA, Mendonça LCS, Nunes LAO et al (2008) Exercise-associated thermographic changes in young and elderly subjects. Ann Biomed Eng 36:1420–1427. doi: 10.1007/s10439-008-9512-1 CrossRefGoogle Scholar
  38. 38.
    Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871. doi: 10.1007/s10439-012-0718-x CrossRefGoogle Scholar
  39. 39.
    Formenti D, Ludwig N, Trecroci A et al (2016) Dynamics of thermographic skin temperature response during squat exercise at two different speeds. J Therm Biol 59:58–63. doi: 10.1016/j.jtherbio.2016.04.013 CrossRefGoogle Scholar
  40. 40.
    Merla A, Mattei PA, Di Donato L, Romani GL (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann Biomed Eng 38:158–163. doi: 10.1007/s10439-009-9809-8 CrossRefGoogle Scholar
  41. 41.
    Priego Quesada JI, Carpes FP, Bini RR et al (2015) Relationship between skin temperature and muscle activation during incremental cycle exercise. J Therm Biol 48:28–35. doi: 10.1016/j.jtherbio.2014.12.005 CrossRefGoogle Scholar
  42. 42.
    Zontak A, Sideman S, Verbitsky O, Beyar R (1998) Dynamic thermography: analysis of hand temperature during exercise. Ann Biomed Eng 26:988–993CrossRefGoogle Scholar
  43. 43.
    Kraemer WJ, Ratamess NA (2004) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 36:674–688. doi: 10.1249/01.MSS.0000121945.36635.61 CrossRefGoogle Scholar
  44. 44.
    Kenney WL, Wilmore JH, Costill DL (2012) Physiology of sport and exercise. Human KineticsGoogle Scholar
  45. 45.
    Schlager O, Gschwandtner ME, Herberg K et al (2010) Correlation of infrared thermography and skin perfusion in Raynaud patients and in healthy controls. Microvasc Res 80:54–57. doi: 10.1016/j.mvr.2010.01.010 CrossRefGoogle Scholar
  46. 46.
    González-Alonso J, Calbet JA, Nielsen B (1999) Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J Physiol 520(Pt 2):577–589CrossRefGoogle Scholar
  47. 47.
    Johnson JM (1985) Kellogg DL (2010) Local thermal control of the human cutaneous circulation. J Appl Physiol Bethesda Md 109:1229–1238. doi: 10.1152/japplphysiol.00407.2010 Google Scholar
  48. 48.
    Simmons GH, Wong BJ, Holowatz LA, Kenney WL (2011) Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Exp Physiol 96:822–828. doi: 10.1113/expphysiol.2010.056176 CrossRefGoogle Scholar
  49. 49.
    Brengelmann GL, Johnson JM, Hermansen L, Rowell LB (1977) Altered control of skin blood flow during exercise at high internal temperatures. J Appl Physiol 43:790–794Google Scholar
  50. 50.
    Vainer BG (2005) FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans. Phys Med Biol 50:R63. doi: 10.1088/0031-9155/50/23/R01 ADSCrossRefGoogle Scholar
  51. 51.
    Taylor GI, Gianoutsos MP, Morris SF (1994) The neurovascular territories of the skin and muscles: anatomic study and clinical implications. Plast Reconstr Surg 94:1–36CrossRefGoogle Scholar
  52. 52.
    Merla A, Di Donato L, Romani GL et al (2008) Comparison of thermal infrared and laser doppler imaging in the assessment of cutaneous tissue perfusion in scleroderma patients and healthy controls. Int J Immunopathol Pharmacol 21:679–686Google Scholar
  53. 53.
    Priego Quesada JI, Carpes FP, Salvador Palmer R et al (2016) Effect of saddle height on skin temperature measured in different days of cycling. SpringerPlus 5:205–214. doi: 10.1186/s40064-016-1843-z CrossRefGoogle Scholar
  54. 54.
    Priego Quesada JI, Lucas-Cuevas AG, Salvador Palmer R et al (2016) Definition of the thermographic regions of interest in cycling by using a factor analysis. Infrared Phys Technol 75:180–186. doi: 10.1016/j.infrared.2016.01.014 ADSCrossRefGoogle Scholar
  55. 55.
    Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi: 10.1016/j.jtherbio.2015.06.005 CrossRefGoogle Scholar
  56. 56.
    Abate M, Di Carlo L, Di Donato L et al (2013) Comparison of cutaneous termic response to a standardised warm up in trained and untrained individuals. J Sports Med Phys Fitness 53:209–215Google Scholar
  57. 57.
    Arfaoui A, Bertucci WM, Letellier T, Polidori G (2014) Thermoregulation during incremental exercise in masters cycling. J Sci Cycl 3:33–41Google Scholar
  58. 58.
    Neves EB, Cunha RM, Rosa C et al (2016) Correlation between skin temperature and heart rate during exercise and recovery, and the influence of body position in these variables in untrained women. Infrared Phys Technol 75:70–76. doi: 10.1016/j.infrared.2015.12.018 ADSCrossRefGoogle Scholar
  59. 59.
    Bertucci W, Arfaoui A, Janson L, Polidori G (2013) Relationship between the gross efficiency and muscular skin temperature of lower limb in cycling: a preliminary study. Comput Methods Biomech Biomed Eng 16(Suppl 1):114–115. doi: 10.1080/10255842.2013.815902 CrossRefGoogle Scholar
  60. 60.
    Merla A, Iodice P, Tangherlini A et al (2005) Monitoring skin temperature in trained and untrained subjects throughout thermal video. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2:1684–1686. doi: 10.1109/IEMBS.2005.1616767 Google Scholar
  61. 61.
    Fritzsche RG, Coyle EF (2000) Cutaneous blood flow during exercise is higher in endurance-trained humans. J Appl Physiol 88:738–744Google Scholar
  62. 62.
    Bartuzi P, Roman-Liu D, Wiśniewski T (2012) The influence of fatigue on muscle temperature. Int J Occup Saf Ergon JOSE 18:233–243Google Scholar
  63. 63.
    Chudecka M, Lubkowska A, Kempińska-Podhorodecka A (2014) Body surface temperature distribution in relation to body composition in obese women. J Therm Biol 43:1–6. doi: 10.1016/j.jtherbio.2014.03.001 CrossRefGoogle Scholar
  64. 64.
    Savastano DM, Gorbach AM, Eden HS et al (2009) Adiposity and human regional body temperature. Am J Clin Nutr 90:1124–1131. doi: 10.3945/ajcn.2009.27567 CrossRefGoogle Scholar
  65. 65.
    Johnson W, de Ruiter I, Kyvik KO et al (2014) Genetic and environmental transactions underlying the association between physical fitness/physical exercise and body composition. Behav Genet. doi: 10.1007/s10519-014-9690-6 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoMilanItaly
  2. 2.Infrared Imaging Lab, ITAB-Institute of Advanced Biomedical Technologies and Department of Neuroscience, Imaging and Clinical SciencesUniversity “G. D’Annunzio”—Chieti-PescaraChietiItaly
  3. 3.Biophysics and Medical Physics Group, Department of PhysiologyUniversity of ValenciaValenciaSpain
  4. 4.Research Group in Sport Biomechanics (GIBD), Department of Physical Education and SportsUniversity of ValenciaValenciaSpain

Personalised recommendations