Methodological Aspects of Infrared Thermography in Human Assessment

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Infrared thermography presents some important advantages in the determination of skin temperature, as it is a safe, non-invasive and non-contact technique with wide applications in the field of sports sciences. Like many others techniques, valid measurement in thermography requires following strict methodological steps from data acquisition to analyses and interpretation. In this chapter, we discuss the methodological aspects that must be taken into account when acquiring thermic images, along with some practical examples and recommendations based on the current literature.


Skin Temperature Thermal Image Infrared Thermography Black Body Source Human Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abate M, Di Carlo L, Di Donato L et al (2013) Comparison of cutaneous termic response to a standardised warm up in trained and untrained individuals. J Sports Med Phys Fitness 53:209–215Google Scholar
  2. 2.
    Akimov EB, Son’kin VD (2011) Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol 37:621–628CrossRefGoogle Scholar
  3. 3.
    de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189CrossRefGoogle Scholar
  4. 4.
    Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871. doi: 10.1007/s10439-012-0718-x CrossRefGoogle Scholar
  5. 5.
    Arfaoui A, Polidori G, Taiar R, Popa C (2012) Infrared Thermography in Sports Activity. Infrared Thermogr 141–168Google Scholar
  6. 6.
    Bertucci W, Arfaoui A, Janson L, Polidori G (2013) Relationship between the gross efficiency and muscular skin temperature of lower limb in cycling: a preliminary study. Comput Methods Biomech Biomed Engin 16(Suppl 1):114–115. doi: 10.1080/10255842.2013.815902 CrossRefGoogle Scholar
  7. 7.
    Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715CrossRefGoogle Scholar
  8. 8.
    Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97:327–332. doi: 10.1113/expphysiol.2011.061002 CrossRefGoogle Scholar
  9. 9.
    Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. doi: 10.1016/j.jtherbio.2014.04.002 CrossRefGoogle Scholar
  10. 10.
    van den Heuvel CJ, Ferguson SA, Dawson D, Gilbert SS (2003) Comparison of digital infrared thermal imaging (DITI) with contact thermometry: pilot data from a sleep research laboratory. Physiol Meas 24:717. doi: 10.1088/0967-3334/24/3/308 CrossRefGoogle Scholar
  11. 11.
    Priego Quesada JI, Martínez Guillamón N, Ortiz Cibrián, de Anda RM et al (2015) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi: 10.1016/j.infrared.2015.07.008 CrossRefGoogle Scholar
  12. 12.
    Smith ADH, Crabtree DR, Bilzon JLJ, Walsh NP (2010) The validity of wireless iButtons and thermistors for human skin temperature measurement. Physiol Meas 31:95–114. doi: 10.1088/0967-3334/31/1/007 CrossRefGoogle Scholar
  13. 13.
    Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300CrossRefGoogle Scholar
  14. 14.
    Psikuta A, Niedermann R, Rossi RM (2013) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol 1–9Google Scholar
  15. 15.
    Tyler CJ (2011) The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol Meas 32:1541–1547. doi: 10.1088/0967-3334/32/10/003 CrossRefGoogle Scholar
  16. 16.
    Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235ADSCrossRefGoogle Scholar
  17. 17.
    Ng E-K (2009) A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci 48:849–859CrossRefGoogle Scholar
  18. 18.
    Fitzgerald A, Berentson-Shaw J (2012) Thermography as a screening and diagnostic tool: a systematic review. N Z Med J 125:80Google Scholar
  19. 19.
    Bouzas Marins JC, de Andrade Fernandes A, Gomes Moreira D et al (2014) Thermographic profile of soccer players’ lower limbs. Rev Andal Med Deporte 7:1–6. doi: 10.1016/S1888-7546(14)70053-X CrossRefGoogle Scholar
  20. 20.
    Priego Quesada JI, Martínez N, Salvador Palmer R et al (2016) Effects of the cycling workload on core and local skin temperatures. Exp Therm Fluid Sci 77:91–99. doi: 10.1016/j.expthermflusci.2016.04.008 CrossRefGoogle Scholar
  21. 21.
    Priego Quesada JI, Carpes FP, Bini RR et al (2015) Relationship between skin temperature and muscle activation during incremental cycle exercise. J Therm Biol 48:28–35. doi: 10.1016/j.jtherbio.2014.12.005 CrossRefGoogle Scholar
  22. 22.
    Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. doi: 10.1016/j.jtherbio.2013.04.005 CrossRefGoogle Scholar
  23. 23.
    Ammer K (2008) The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol Int 18:125–144Google Scholar
  24. 24.
    Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: A review. Infrared Phys Technol 71:28–55. doi: 10.1016/j.infrared.2015.02.007 ADSCrossRefGoogle Scholar
  25. 25.
    A Committee on Quality Control and Qualifications of the American Academy of Thermology (1986) Technical guidelines, Edition 2. Thermology 2:108–112Google Scholar
  26. 26.
    Schwartz RG (2006) Guidelines for neuromusculoskeletal thermography. Thermol Int 16:5–9Google Scholar
  27. 27.
    Ludwig N, Formenti D, Gargano M, Alberti G (2014) Skin temperature evaluation by infrared thermography: comparison of image analysis methods. Infrared Phys Technol 62:1–6ADSCrossRefGoogle Scholar
  28. 28.
    Marins JCB, Moreira DG, Cano SP et al (2014) Time required to stabilize thermographic images at rest. Infrared Phys Technol 65:30–35. doi: 10.1016/j.infrared.2014.02.008 ADSCrossRefGoogle Scholar
  29. 29.
    Maniar N, Bach AJE, Stewart IB, Costello JT (2015) The effect of using different regions of interest on local and mean skin temperature. J Therm Biol 49–50:33–38. doi: 10.1016/j.jtherbio.2015.01.008 CrossRefGoogle Scholar
  30. 30.
    Priego Quesada JI, Lucas-Cuevas AG, Salvador Palmer R et al (2016) Definition of the thermographic regions of interest in cycling by using a factor analysis. Infrared Phys Technol 75:180–186. doi: 10.1016/j.infrared.2016.01.014 ADSCrossRefGoogle Scholar
  31. 31.
    ISO (2008) Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening. TC121/SC3-IEC SC62DGoogle Scholar
  32. 32.
    ISO (2009) Medical electrical equipment-deployment, implementation and operational guidelines for identifying febrile humans using a screening thermograph. TR 13154:2009 ISO/TR 8-600Google Scholar
  33. 33.
    Bach AJ, Stewart IB, Minett GM, Costello JT (2015) Does the technique employed for skin temperature assessment alter outcomes? A systematic review. Physiol Meas 36:R27ADSCrossRefGoogle Scholar
  34. 34.
    Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. doi: 10.1007/s00421-010-1744-8 CrossRefGoogle Scholar
  35. 35.
    Fernández-Cuevas I, Sillero-Quintana M, Garcia-Concepcion MA et al (2014) Monitoring skin thermal response to training with infrared thermography. New Stud Athl 29:57–71Google Scholar
  36. 36.
    Barcelos EZ, Caminhas WM, Ribeiro E et al (2014) A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images. Sensors 14:21950–21967. doi: 10.3390/s141121950 CrossRefGoogle Scholar
  37. 37.
    Chudecka M, Lubkowska A (2015) Thermal maps of young women and men. Infrared Phys Technol 69:81–87. doi: 10.1016/j.infrared.2015.01.012 ADSCrossRefGoogle Scholar
  38. 38.
    Merla A, Mattei PA, Di Donato L, Romani GL (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann Biomed Eng 38:158–163. doi: 10.1007/s10439-009-9809-8 CrossRefGoogle Scholar
  39. 39.
    Paolillo FR, Lins EC, Corazza AV et al (2013) Thermography applied during exercises with or without infrared light-emitting diode irradiation: individual and comparative analysis. Photomed Laser Surg 31:349–355. doi: 10.1089/pho.2013.3505 CrossRefGoogle Scholar
  40. 40.
    Vardasca R, Simoes R (2013) Current issues in medical thermography. In: Topics in medical image processing and computational vision. Springer, Berlin, pp 223–237Google Scholar
  41. 41.
    Ring EFJ, Ammer K (2000) The technique of infrared imaging in medicine. Thermol Int 10:7–14Google Scholar
  42. 42.
    Ring EFJ, Ammer K (2012) Infrared thermal imaging in medicine. Physiol Meas 33:R33–46. doi: 10.1088/0967-3334/33/3/R33 ADSCrossRefGoogle Scholar
  43. 43.
    Ammer K (2005) Temperature readings from thermal images are less dependent on the number of pixels of the measurement area than on variation of room temperature. Thermol Int 15:131–133Google Scholar
  44. 44.
    Duc S, Arfaoui A, Polidori G, Bertucci W (2015) Efficiency and thermography in cycling during a graded exercise test. J Exerc Sports Orthop 2:1–8CrossRefGoogle Scholar
  45. 45.
    Merla A, Iodice P, Tangherlini A, et al (2005) Monitoring skin temperature in trained and untrained subjects throughout thermal video. In: Conference proceedings: annual international conference of the IEEE, Engineering in Medicine and Biology Society vol 2, pp 1684–1686. doi: 10.1109/IEMBS.2005.1616767
  46. 46.
    Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385CrossRefGoogle Scholar
  47. 47.
    Vollmer M, Möllmann K-P (2011) Infrared thermal imaging: fundamentals, research and applications. Wiley, WeinheimGoogle Scholar
  48. 48.
    Ammer K (2006) Influence of imaging and object conditions on temperature readings from medical infrared images. Pol J Environ Stud (Submitted)Google Scholar
  49. 49.
    Ivanitsky GR, Khizhnyak EP, Deev AA, Khizhnyak LN (2006) Thermal imaging in medicine: A comparative study of infrared systems operating in wavelength ranges of 3-5 and 8-12 microm as applied to diagnosis. Dokl Biochem Biophys 407:59–63CrossRefGoogle Scholar
  50. 50.
    Tkáčová M, Hudák R, Foffová P, Živčák J (2010) An importance of camera subject distance and angle in musculoskeletal applications of medical thermography. Acta Electrotech Inform 10:57–60Google Scholar
  51. 51.
    Petrofsky JS, Lohman E, Suh HJ, et al (2006) The effect of aging on conductive heat exchange in the skin at two environmental temperatures. Med Sci Monit Int Med J Exp Clin Res 12:CR400–408Google Scholar
  52. 52.
    Guéritée J, Tipton MJ (2015) The relationship between radiant heat, air temperature and thermal comfort at rest and exercise. Physiol Behav 139:378–385. doi: 10.1016/j.physbeh.2014.11.064 CrossRefGoogle Scholar
  53. 53.
    Dumke CL, Slivka DR, Cuddy JS et al (2015) The effect of environmental temperature on glucose and insulin after an oral glucose tolerance test in healthy young men. Wilderness Environ Med 26:335–342. doi: 10.1016/j.wem.2015.03.002 CrossRefGoogle Scholar
  54. 54.
    Maughan RJ, Otani H, Watson P (2011) Influence of relative humidity on prolonged exercise capacity in a warm environment. Eur J Appl Physiol 112:2313–2321. doi: 10.1007/s00421-011-2206-7 CrossRefGoogle Scholar
  55. 55.
    Priego Quesada JI, Carpes FP, Salvador Palmer R et al (2016) Effect of saddle height on skin temperature measured in different days of cycling. SpringerPlus 5:205–214. doi: 10.1186/s40064-016-1843-z CrossRefGoogle Scholar
  56. 56.
    Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi: 10.1016/j.jtherbio.2015.06.005 CrossRefGoogle Scholar
  57. 57.
    ISO (2008) 18434-1:2008: Condition monitoring and diagnostics of machines—thermography—part 1: general proceduresGoogle Scholar
  58. 58.
    Steketee J (1973) Spectral emissivity of skin and pericardium. Phys Med Biol 18:686CrossRefGoogle Scholar
  59. 59.
    Togawa T (1989) Non-contact skin emissivity: measurement from reflectance using step change in ambient radiation temperature. Clin Phys Physiol Meas 10:39CrossRefGoogle Scholar
  60. 60.
    Sanchez-Marin FJ, Calixto-Carrera S, Villaseñor-Mora C (2009) Novel approach to assess the emissivity of the human skin. J Biomed Opt 14:24006–24006–6. doi: 10.1117/1.3086612 CrossRefGoogle Scholar
  61. 61.
    James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. doi: 10.1016/j.jtherbio.2014.08.010 CrossRefGoogle Scholar
  62. 62.
    Bernard V, Staffa E, Mornstein V, Bourek A (2013) Infrared camera assessment of skin surface temperature—effect of emissivity. Phys Med 29:583–591. doi: 10.1016/j.ejmp.2012.09.003 CrossRefGoogle Scholar
  63. 63.
    Zontak A, Sideman S, Verbitsky O, Beyar R (1998) Dynamic thermography: analysis of hand temperature during exercise. Ann Biomed Eng 26:988–993CrossRefGoogle Scholar
  64. 64.
    Ferreira JJA, Mendonça LCS, Nunes LAO et al (2008) Exercise-associated thermographic changes in young and elderly subjects. Ann Biomed Eng 36:1420–1427. doi: 10.1007/s10439-008-9512-1 CrossRefGoogle Scholar
  65. 65.
    Bertmaring I, Babski-Reeves K, Nussbaum MA (2008) Infrared imaging of the anterior deltoid during overhead static exertions. Ergonomics 51:1606–1619. doi: 10.1080/00140130802216933 CrossRefGoogle Scholar
  66. 66.
    Houdas Y, Ring EFJ (1982) Temperature distribution. In: Human body temperature. Springer, berlin, pp 81–103Google Scholar
  67. 67.
    Smolander J, Härmä M, Lindgvist A et al (1993) Circadian variation in peripheral blood flow in relation to core temperature at rest. Eur J Appl Physiol 67:192–196. doi: 10.1007/BF00376666 CrossRefGoogle Scholar
  68. 68.
    Chamberlain JM, Terndrup TE, Alexander DT et al (1995) Determination of normal ear temperature with an infrared emission detection thermometer. Ann Emerg Med 25:15–20. doi: 10.1016/S0196-0644(95)70349-7 CrossRefGoogle Scholar
  69. 69.
    Costa CMA, Sillero-Quintana M, Piñonosa Cano S et al (2015) Daily oscillations of skin temperature in military personnel using thermography. J R Army Med Corps. doi: 10.1136/jramc-2015-000462 Google Scholar
  70. 70.
    Marins JCB, Formenti D, Costa CMA et al (2015) Circadian and gender differences in skin temperature in militaries by thermography. Infrared Phys Technol 71:322–328. doi: 10.1016/j.infrared.2015.05.008 CrossRefGoogle Scholar
  71. 71.
    Ammer K (2009) Does neuromuscular thermography record nothing else but an infrared sympathetic skin response? Thermol Int 19:107–108Google Scholar
  72. 72.
    Zaidi H, Fohanno S, Polidori G, Taiar R (2007) The influence of swimming type on the skin-temperature maps of a competitive swimmer from infrared thermography. Acta Bioeng Biomech 9:47Google Scholar
  73. 73.
    Novotny J, Rybarova S, Zacha D et al (2015) The influence of breaststroke swimming on the muscle activity of young men in thermographic imaging. Acta Bioeng Biomech 17:121Google Scholar
  74. 74.
    van Ooijen AMJ, van Marken Lichtenbelt WD, Westerterp KR (2001) Individual differences in body temperature and the relation to energy expenditure: the influence of mild cold. J Therm Biol 26:455–459. doi: 10.1016/S0306-4565(01)00060-2 CrossRefGoogle Scholar
  75. 75.
    Gagnon D, Kenny GP (2011) Sex modulates whole-body sudomotor thermosensitivity during exercise. J Physiol 589:6205–6217. doi: 10.1113/jphysiol.2011.219220 CrossRefGoogle Scholar
  76. 76.
    Karki A, Karppi P, Ekberg J, Selfe J (2004) A thermographic investigation of skin temperature changes in response to a thermal washout of the knee in healthy young adults. Thermol Int 14:137–141Google Scholar
  77. 77.
    Gagnon D, Jay O, Lemire B, Kenny GP (2008) Sex-related differences in evaporative heat loss: the importance of metabolic heat production. Eur J Appl Physiol 104:821–829. doi: 10.1007/s00421-008-0837-0 CrossRefGoogle Scholar
  78. 78.
    Gonzalez RR (1985) Blanchard LA (1998) Thermoregulatory responses to cold transients: effects of menstrual cycle in resting women. J Appl Physiol Bethesda Md 85:543–553Google Scholar
  79. 79.
    Stachenfeld NS, Silva C, Keefe DL (2000) Estrogen modifies the temperature effects of progesterone. J Appl Physiol Bethesda Md 1985 88:1643–1649Google Scholar
  80. 80.
    Bartelink ML, Wollersheim H, Theeuwes A et al (1990) Changes in skin blood flow during the menstrual cycle: the influence of the menstrual cycle on the peripheral circulation in healthy female volunteers. Clin Sci 78:527–532CrossRefGoogle Scholar
  81. 81.
    Niu HH, Lui PW, Hu JS et al (2001) Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Zhonghua Yi Xue Za Zhi Chin Med J Free China Ed 64:459–468Google Scholar
  82. 82.
    Inbar O, Morris N, Epstein Y, Gass G (2004) Comparison of thermoregulatory responses to exercise in dry heat among prepubertal boys, young adults and older males. Exp Physiol 89:691–700. doi: 10.1113/expphysiol.2004.027979 CrossRefGoogle Scholar
  83. 83.
    Ho CW, Beard JL, Farrell PA et al (1997) Age, fitness, and regional blood flow during exercise in the heat. J Appl Physiol Bethesda Md 82:1126–1135Google Scholar
  84. 84.
    Stapleton JM, Poirier MP, Flouris AD et al (2015) Aging impairs heat loss, but when does it matter? J Appl Physiol Bethesda Md 1985 118:299–309. doi: 10.1152/japplphysiol.00722.2014 Google Scholar
  85. 85.
    Havenith G (2001) Human surface to mass ratio and body core temperature in exercise heat stress—a concept revisited. J Therm Biol 26:387–393. doi: 10.1016/S0306-4565(01)00049-3 CrossRefGoogle Scholar
  86. 86.
    Cramer MN, Jay O (2016) Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci Basic Clin 196:3–13. doi: 10.1016/j.autneu.2016.03.001 CrossRefGoogle Scholar
  87. 87.
    Du Bois D, Du Bois EF (1916) Clinical calorimetry: a formula to estimate the appropriate surface area if height and weight be known. Arch Intern Med 17:863–871CrossRefGoogle Scholar
  88. 88.
    Chudecka M, Lubkowska A, Kempińska-Podhorodecka A (2014) Body surface temperature distribution in relation to body composition in obese women. J Therm Biol 43:1–6. doi: 10.1016/j.jtherbio.2014.03.001 CrossRefGoogle Scholar
  89. 89.
    Savastano DM, Gorbach AM, Eden HS et al (2009) Adiposity and human regional body temperature. Am J Clin Nutr 90:1124–1131. doi: 10.3945/ajcn.2009.27567 CrossRefGoogle Scholar
  90. 90.
    Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. doi: 10.1088/0967-3334/29/4/007 CrossRefGoogle Scholar
  91. 91.
    Ichinose-Kuwahara T, Inoue Y, Iseki Y et al (2010) Sex differences in the effects of physical training on sweat gland responses during a graded exercise. Exp Physiol 95:1026–1032. doi: 10.1113/expphysiol.2010.053710 CrossRefGoogle Scholar
  92. 92.
    Simmons GH, Wong BJ, Holowatz LA, Kenney WL (2011) Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Exp Physiol 96:822–828. doi: 10.1113/expphysiol.2010.056176 CrossRefGoogle Scholar
  93. 93.
    Ring EF, Collins AJ, Bacon PA, Cosh JA (1974) Quantitation of thermography in arthritis using multi-isothermal analysis. II. Effect of nonsteroidal anti-inflammatory therapy on the thermographic index. Ann Rheum Dis 33:353CrossRefGoogle Scholar
  94. 94.
    Ring EF, Engel J, Page-Thomas DP (1984) Thermologic methods in clinical pharmacology-skin temperature measurement in drug trials. Int J Clin Pharmacol 22:20–24Google Scholar
  95. 95.
    Toshihiko U, Yoshiharu T, Atsuhiro M et al (1987) Application of thermography to the evaluation of the histamine skin test in man. J Pharmacol Methods 18:103–110CrossRefGoogle Scholar
  96. 96.
    Wilczyński S (2015) The use of dynamic thermal analysis to distinguish between genuine and counterfeit drugs. Int J Pharm 490:16–21. doi: 10.1016/j.ijpharm.2015.04.077 CrossRefGoogle Scholar
  97. 97.
    Westerterp-Plantenga MS, Wouters L, ten Hoor F (1990) Deceleration in cumulative food intake curves, changes in body temperature and diet-induced thermogenesis. Physiol Behav 48:831–836CrossRefGoogle Scholar
  98. 98.
    Hirai A, Tanabe M, Shido O (1991) Enhancement of finger blood flow response of postprandial human subjects to the increase in body temperature during exercise. Eur J Appl Physiol 62:221–227CrossRefGoogle Scholar
  99. 99.
    Kieser E, Dellimore K, Scheffer C, et al (2015) Development of diagnostic sensors for infant dehydration assessment using optical methods. In: Conference proceedings: annual international conference of the IEEE, Engineering in Medicine and Biology Society, vol 2015, pp 5537–5540. doi: 10.1109/EMBC.2015.7319646
  100. 100.
    Hughes JH, Henry RE, Daly MJ (1984) Influence of ethanol and ambient temperature on skin blood flow. Ann Emerg Med 13:597–600. doi: 10.1016/S0196-0644(84)80282-6 CrossRefGoogle Scholar
  101. 101.
    Mannara G, Salvatori GC, Pizzuti GP (1993) Ethyl alcohol induced skin temperature changes evaluated by thermography. Preliminary results. Boll Della Soc Ital Biol Sper 69:587Google Scholar
  102. 102.
    Wolf R, Tüzün B, Tüzün Y (1999) Alcohol ingestion and the cutaneous vasculature1. Clin Dermatol 17:395–403. doi: 10.1016/S0738-081X(99)00023-1 CrossRefGoogle Scholar
  103. 103.
    Ammer K, Melnizky P, Rathkolb O (2003) Skin temperature after intake of sparkling wine, still wine or sparkling water. Thermol Int 13:99–102Google Scholar
  104. 104.
    Koot P, Deurenberg P (1995) Comparison of changes in energy expenditure and body temperatures after caffeine consumption. Ann Nutr Metab 39:135–142. doi: 10.1159/000177854 CrossRefGoogle Scholar
  105. 105.
    Quinlan P, Lane J, Aspinall L (1997) Effects of hot tea, coffee and water ingestion on physiological responses and mood: the role of caffeine, water and beverage type. Psychopharmacology 134:164–173. doi: 10.1007/s002130050438 CrossRefGoogle Scholar
  106. 106.
    Quinlan PT, Lane J, Moore KL et al (2000) The acute physiological and mood effects of tea and coffee: the role of caffeine level. Pharmacol Biochem Behav 66:19–28CrossRefGoogle Scholar
  107. 107.
    Gershon-Cohen J, Borden AGB, Hermel MB (1969) Thermography of extremities after smoking. Br J Radiol 42:189–191CrossRefGoogle Scholar
  108. 108.
    Bornmyr S, Svensson H (1991) Thermography and laser-Doppler flowmetry for monitoring changes in finger skin blood flow upon cigarette smoking. Clin Physiol 11:135–141CrossRefGoogle Scholar
  109. 109.
    Ijzerman RG, Serne EH, van Weissenbruch MM et al (2003) Cigarette smoking is associated with an acute impairment of microvascular function in humans. Clin Sci 104:247–252CrossRefGoogle Scholar
  110. 110.
    Barnes RB (1963) Thermography of the human body. Science 140:870–877ADSCrossRefGoogle Scholar
  111. 111.
    Togawa T, Saito H (1994) Non-contact imaging of thermal properties of the skin. Physiol Meas 15:291. doi: 10.1088/0967-3334/15/3/007 CrossRefGoogle Scholar
  112. 112.
    Connolly DaJ, Sayers SP, McHugh MP (2003) Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res 17:197–208Google Scholar
  113. 113.
    Ryu JH, Paik IY, Woo JH et al (2016) Impact of different running distances on muscle and lymphocyte DNA damage in amateur marathon runners. J Phys Ther Sci 28:450–455. doi: 10.1589/jpts.28.450 CrossRefGoogle Scholar
  114. 114.
    Petersen B, Philipsen PA, Wulf HC (2014) Skin temperature during sunbathing–relevance for skin cancer. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol 13:1123–1125. doi: 10.1039/c4pp00066h Google Scholar
  115. 115.
    Whay HR, Bell MJ, Main DCJ (2004) Validation of lame limb identification through thermal imaging. In: Proceedings of 13th international symposium and 5th conference of lameness rumen. Maribor Slovenija, pp 11–15Google Scholar
  116. 116.
    Stokes JE, Leach KA, Main DCJ, Whay HR (2012) An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet J 193:674–678CrossRefGoogle Scholar
  117. 117.
    Vardasca R, Ring F, Plassmann P, Jones C (2012) Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol Int 22:53–60Google Scholar
  118. 118.
    Sillero-Quintana M, Fernández-Jaén T, Fernández-Cuevas I et al (2015) Infrared thermography as a support tool for screening and early diagnosis in emergencies. J Med Imaging Health Inform 5:1223–1228CrossRefGoogle Scholar
  119. 119.
    Nowakowski AZ (2006) Advances of quantitative IR-thermal imaging in medical diagnostics. Brain 10:3Google Scholar
  120. 120.
    Vainionpaa M, Tienhaara E-P, Raekallio M et al (2012) Thermographic imaging of the superficial temperature in racing greyhounds before and after the race. Sci World J. doi: 10.1100/2012/182749 Google Scholar
  121. 121.
    Keramidas ME, Geladas ND, Mekjavic IB, Kounalakis SN (2013) Forearm-finger skin temperature gradient as an index of cutaneous perfusion during steady-state exercise. Clin Physiol Funct Imaging 33:400–404. doi: 10.1111/cpf.12043 CrossRefGoogle Scholar
  122. 122.
    Haddad DS, Brioschi ML, Baladi MG, Arita ES (2016) A new evaluation of heat distribution on facial skin surface by infrared thermography. Dentomaxillofacial Radiol 20150264. doi: 10.1259/dmfr.20150264
  123. 123.
    Taylor NAS, Tipton MJ, Kenny GP (2014) Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol 46:72–101. doi: 10.1016/j.jtherbio.2014.10.006 CrossRefGoogle Scholar
  124. 124.
    Choi JK, Miki K, Sagawa S, Shiraki K (1997) Evaluation of mean skin temperature formulas by infrared thermography. Int J Biometeorol 41:68–75. doi: 10.1007/s004840050056 CrossRefGoogle Scholar
  125. 125.
    Sun P-C, Jao S-HE, Cheng C-K (2005) Assessing foot temperature using infrared thermography. Foot Ankle Int 26:847–853. doi: 10.1177/107110070502601010 Google Scholar
  126. 126.
    Haddad DS, Brioschi ML, Vardasca R et al (2014) Thermographic characterization of masticatory muscle regions in volunteers with and without myogenous temporomandibular disorder: preliminary results. Dentomaxillofacial Radiol 43:20130440. doi: 10.1259/dmfr.20130440 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Biophysics and Medical Physics Group, Department of PhysiologyUniversity of ValenciaValenciaSpain
  2. 2.Research Group in Sport Biomechanics (GIBD), Department of Physical Education and SportsUniversity of ValenciaValenciaSpain
  3. 3.Applied Neuromechanics Group, Laboratory of NeuromechanicsFederal University of PampaUruguaianaBrazil

Personalised recommendations