Physics Principles of the Infrared Thermography and Human Thermoregulation

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Although it is easy to capture a thermal image with infrared thermography, it is necessary to have the basic knowledge about how it works and the physical laws relating to it, as well as the radiative characteristics of the different bodies, and how heat is transferred between space and bodies. This knowledge is essential to establishing a logical hypothesis, using the camera rigorously, and interpreting the thermal data correctly. The aim of this chapter is to present the basic physical principles of infrared thermography, heat transfer and human thermoregulation.


Heat Transfer Heat Production Infrared Radiation Black Body Infrared Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715CrossRefGoogle Scholar
  2. 2.
    Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385CrossRefGoogle Scholar
  3. 3.
    Duc S, Arfaoui A, Polidori G, Bertucci W (2015) Efficiency and thermography in cycling during a graded exercise test. J Exerc Sports Orthop 2:1–8CrossRefGoogle Scholar
  4. 4.
    Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. doi: 10.1016/j.jtherbio.2013.04.005 CrossRefGoogle Scholar
  5. 5.
    Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi: 10.1016/j.jtherbio.2015.06.005 CrossRefGoogle Scholar
  6. 6.
    de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189CrossRefGoogle Scholar
  7. 7.
    Priego Quesada JI, Martínez Guillamón N, Ortiz Cibrián, de Anda RM et al (2015) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi: 10.1016/j.infrared.2015.07.008 CrossRefGoogle Scholar
  8. 8.
    Parsons K (2002) Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance, 2nd edn. CRC Press, USAGoogle Scholar
  9. 9.
    Vardasca R, Simoes R (2013) Current issues in medical thermography. In: Topics in medical image processing and computational vision. Springer, Berlin, pp 223–237Google Scholar
  10. 10.
    Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. doi: 10.1016/j.jtherbio.2014.04.002 CrossRefGoogle Scholar
  11. 11.
    González-Alonso J (2012) Human thermoregulation and the cardiovascular system. Exp Physiol 97:340–346. doi: 10.1113/expphysiol.2011.058701 CrossRefGoogle Scholar
  12. 12.
    Cramer MN, Jay O (2016) Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci Basic Clin 196:3–13. doi: 10.1016/j.autneu.2016.03.001 CrossRefGoogle Scholar
  13. 13.
    Jones BF (1998) A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans Med Imaging 17:1019–1027. doi: 10.1109/42.746635 CrossRefGoogle Scholar
  14. 14.
    Astarita T, Carlomagno GM (2012) Infrared thermography for thermo-fluid-dynamics. Springer, BerlinGoogle Scholar
  15. 15.
    Ng E-K (2009) A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci 48:849–859CrossRefGoogle Scholar
  16. 16.
    Vollmer M, Möllmann K-P (2011) Infrared thermal imaging: fundamentals, research and applications. Wiley, WeinheimGoogle Scholar
  17. 17.
    Walther M, Weimann G (2006) Infrared imaging with InAs/GaSb type-II superlattices. Phys Status Solidi A 203:3545–3549. doi: 10.1002/pssa.200622385 ADSCrossRefGoogle Scholar
  18. 18.
    Watmough DJ, Fowler PW, Oliver R (1970) The thermal scanning of a curved isothermal surface: implications for clinical thermography. Phys Med Biol 15:1. doi: 10.1088/0031-9155/15/1/301 CrossRefGoogle Scholar
  19. 19.
    Salter DC (1976) The effect of obliquity in clinical thermograms. Phys Med Biol 21:980CrossRefGoogle Scholar
  20. 20.
    Ammer K (2008) The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol Int 18:125–144Google Scholar
  21. 21.
    Mitchell HJ, Salvaggio C (2003) MWIR and LWIR spectral signatures of water and associated materials. In: Proceedings of SPIE image exploit. Target recognition, algorithms multispectral hyperspectral ultraspectral image, vol IX, pp 195–205Google Scholar
  22. 22.
    Bernard V, Staffa E, Mornstein V, Bourek A (2013) Infrared camera assessment of skin surface temperature—effect of emissivity. Phys Med 29:583–591. doi: 10.1016/j.ejmp.2012.09.003 CrossRefGoogle Scholar
  23. 23.
    Steketee J (1973) Spectral emissivity of skin and pericardium. Phys Med Biol 18:686CrossRefGoogle Scholar
  24. 24.
    Kells BE, Kennedy JG, Biagioni PA, Lamey PJ (2000) Computerized infrared thermographic imaging and pulpal blood flow: Part 1. A protocol for thermal imaging of human teeth. Int Endod J 33:442–447CrossRefGoogle Scholar
  25. 25.
    Carr WW, Sarma DS, Johnson MR et al (1997) Infrared absorption studies of fabrics. Text Res J 67:725–738CrossRefGoogle Scholar
  26. 26.
    Marinetti S, Cesaratto PG (2012) Emissivity estimation for accurate quantitative thermography. NDT E Int 51:127–134. doi: 10.1016/j.ndteint.2012.06.001 CrossRefGoogle Scholar
  27. 27.
    Avdelidis NP, Moropoulou A (2003) Emissivity considerations in building thermography. Energy Build 35:663–667. doi: 10.1016/S0378-7788(02)00210-4 CrossRefGoogle Scholar
  28. 28.
    Togawa T (1989) Non-contact skin emissivity: measurement from reflectance using step change in ambient radiation temperature. Clin Phys Physiol Meas 10:39CrossRefGoogle Scholar
  29. 29.
    Sanchez-Marin FJ, Calixto-Carrera S, Villaseñor-Mora C (2009) Novel approach to assess the emissivity of the human skin. J Biomed Opt 14:24006–24006–6. doi: 10.1117/1.3086612 CrossRefGoogle Scholar
  30. 30.
    Charkoudian N (2016) Human thermoregulation from the autonomic perspective. Auton Neurosci Basic Clin 196:1–2. doi: 10.1016/j.autneu.2016.02.007 CrossRefGoogle Scholar
  31. 31.
    Lim CL, Byrne C, Lee JK (2008) Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann Acad Med Singapore 37:347–353Google Scholar
  32. 32.
    Kenny GP, Journeay WS (2010) Human thermoregulation: separating thermal and nonthermal effects on heat loss. Front Biosci Landmark Ed 15:259–290CrossRefGoogle Scholar
  33. 33.
    Castellani JW, Young AJ (2016) Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton Neurosci 196:63–74. doi: 10.1016/j.autneu.2016.02.009 CrossRefGoogle Scholar
  34. 34.
    González-Alonso J, Crandall CG, Johnson JM (2008) The cardiovascular challenge of exercising in the heat. J Physiol 586:45–53. doi: 10.1113/jphysiol.2007.142158 CrossRefGoogle Scholar
  35. 35.
    Périard JD, Travers GJS, Racinais S, Sawka MN (2016) Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 196:52–62. doi: 10.1016/j.autneu.2016.02.002 CrossRefGoogle Scholar
  36. 36.
    Périard JD, Racinais S, Sawka MN (2015) Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand J Med Sci Sports 25:20–38. doi: 10.1111/sms.12408 CrossRefGoogle Scholar
  37. 37.
    Gavin TP (2003) Clothing and thermoregulation during exercise. Sports Med Auckl NZ 33:941–947CrossRefGoogle Scholar
  38. 38.
    Havenith G, Bröde P, den Hartog E et al (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol Bethesda Md 114:778–785. doi: 10.1152/japplphysiol.01271.2012 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Biophysics and Medical Physics Group, Department of PhysiologyUniversity of ValenciaValenciaSpain
  2. 2.Research Group in Sport Biomechanics (GIBD), Department of Physical Education and SportsUniversity of ValenciaValenciaSpain

Personalised recommendations