Skip to main content

Physics Principles of the Infrared Thermography and Human Thermoregulation

  • Chapter
  • First Online:
Application of Infrared Thermography in Sports Science

Abstract

Although it is easy to capture a thermal image with infrared thermography, it is necessary to have the basic knowledge about how it works and the physical laws relating to it, as well as the radiative characteristics of the different bodies, and how heat is transferred between space and bodies. This knowledge is essential to establishing a logical hypothesis, using the camera rigorously, and interpreting the thermal data correctly. The aim of this chapter is to present the basic physical principles of infrared thermography, heat transfer and human thermoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715

    Article  Google Scholar 

  2. Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385

    Article  Google Scholar 

  3. Duc S, Arfaoui A, Polidori G, Bertucci W (2015) Efficiency and thermography in cycling during a graded exercise test. J Exerc Sports Orthop 2:1–8

    Article  Google Scholar 

  4. Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. doi:10.1016/j.jtherbio.2013.04.005

    Article  Google Scholar 

  5. Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi:10.1016/j.jtherbio.2015.06.005

    Article  Google Scholar 

  6. de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189

    Article  Google Scholar 

  7. Priego Quesada JI, Martínez Guillamón N, Ortiz Cibrián, de Anda RM et al (2015) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi:10.1016/j.infrared.2015.07.008

    Article  Google Scholar 

  8. Parsons K (2002) Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance, 2nd edn. CRC Press, USA

    Google Scholar 

  9. Vardasca R, Simoes R (2013) Current issues in medical thermography. In: Topics in medical image processing and computational vision. Springer, Berlin, pp 223–237

    Google Scholar 

  10. Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. doi:10.1016/j.jtherbio.2014.04.002

    Article  Google Scholar 

  11. González-Alonso J (2012) Human thermoregulation and the cardiovascular system. Exp Physiol 97:340–346. doi:10.1113/expphysiol.2011.058701

    Article  Google Scholar 

  12. Cramer MN, Jay O (2016) Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci Basic Clin 196:3–13. doi:10.1016/j.autneu.2016.03.001

    Article  Google Scholar 

  13. Jones BF (1998) A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans Med Imaging 17:1019–1027. doi:10.1109/42.746635

    Article  Google Scholar 

  14. Astarita T, Carlomagno GM (2012) Infrared thermography for thermo-fluid-dynamics. Springer, Berlin

    Google Scholar 

  15. Ng E-K (2009) A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci 48:849–859

    Article  Google Scholar 

  16. Vollmer M, Möllmann K-P (2011) Infrared thermal imaging: fundamentals, research and applications. Wiley, Weinheim

    Google Scholar 

  17. Walther M, Weimann G (2006) Infrared imaging with InAs/GaSb type-II superlattices. Phys Status Solidi A 203:3545–3549. doi:10.1002/pssa.200622385

    Article  ADS  Google Scholar 

  18. Watmough DJ, Fowler PW, Oliver R (1970) The thermal scanning of a curved isothermal surface: implications for clinical thermography. Phys Med Biol 15:1. doi:10.1088/0031-9155/15/1/301

    Article  Google Scholar 

  19. Salter DC (1976) The effect of obliquity in clinical thermograms. Phys Med Biol 21:980

    Article  Google Scholar 

  20. Ammer K (2008) The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol Int 18:125–144

    Google Scholar 

  21. Mitchell HJ, Salvaggio C (2003) MWIR and LWIR spectral signatures of water and associated materials. In: Proceedings of SPIE image exploit. Target recognition, algorithms multispectral hyperspectral ultraspectral image, vol IX, pp 195–205

    Google Scholar 

  22. Bernard V, Staffa E, Mornstein V, Bourek A (2013) Infrared camera assessment of skin surface temperature—effect of emissivity. Phys Med 29:583–591. doi:10.1016/j.ejmp.2012.09.003

    Article  Google Scholar 

  23. Steketee J (1973) Spectral emissivity of skin and pericardium. Phys Med Biol 18:686

    Article  Google Scholar 

  24. Kells BE, Kennedy JG, Biagioni PA, Lamey PJ (2000) Computerized infrared thermographic imaging and pulpal blood flow: Part 1. A protocol for thermal imaging of human teeth. Int Endod J 33:442–447

    Article  Google Scholar 

  25. Carr WW, Sarma DS, Johnson MR et al (1997) Infrared absorption studies of fabrics. Text Res J 67:725–738

    Article  Google Scholar 

  26. Marinetti S, Cesaratto PG (2012) Emissivity estimation for accurate quantitative thermography. NDT E Int 51:127–134. doi:10.1016/j.ndteint.2012.06.001

    Article  Google Scholar 

  27. Avdelidis NP, Moropoulou A (2003) Emissivity considerations in building thermography. Energy Build 35:663–667. doi:10.1016/S0378-7788(02)00210-4

    Article  Google Scholar 

  28. Togawa T (1989) Non-contact skin emissivity: measurement from reflectance using step change in ambient radiation temperature. Clin Phys Physiol Meas 10:39

    Article  Google Scholar 

  29. Sanchez-Marin FJ, Calixto-Carrera S, Villaseñor-Mora C (2009) Novel approach to assess the emissivity of the human skin. J Biomed Opt 14:24006–24006–6. doi:10.1117/1.3086612

    Article  Google Scholar 

  30. Charkoudian N (2016) Human thermoregulation from the autonomic perspective. Auton Neurosci Basic Clin 196:1–2. doi:10.1016/j.autneu.2016.02.007

    Article  Google Scholar 

  31. Lim CL, Byrne C, Lee JK (2008) Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann Acad Med Singapore 37:347–353

    Google Scholar 

  32. Kenny GP, Journeay WS (2010) Human thermoregulation: separating thermal and nonthermal effects on heat loss. Front Biosci Landmark Ed 15:259–290

    Article  Google Scholar 

  33. Castellani JW, Young AJ (2016) Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton Neurosci 196:63–74. doi:10.1016/j.autneu.2016.02.009

    Article  Google Scholar 

  34. González-Alonso J, Crandall CG, Johnson JM (2008) The cardiovascular challenge of exercising in the heat. J Physiol 586:45–53. doi:10.1113/jphysiol.2007.142158

    Article  Google Scholar 

  35. Périard JD, Travers GJS, Racinais S, Sawka MN (2016) Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 196:52–62. doi:10.1016/j.autneu.2016.02.002

    Article  Google Scholar 

  36. Périard JD, Racinais S, Sawka MN (2015) Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand J Med Sci Sports 25:20–38. doi:10.1111/sms.12408

    Article  Google Scholar 

  37. Gavin TP (2003) Clothing and thermoregulation during exercise. Sports Med Auckl NZ 33:941–947

    Article  Google Scholar 

  38. Havenith G, Bröde P, den Hartog E et al (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol Bethesda Md 114:778–785. doi:10.1152/japplphysiol.01271.2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Ignacio Priego Quesada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Priego Quesada, J.I., Salvador Palmer, R., Cibrián Ortiz de Anda, R.M. (2017). Physics Principles of the Infrared Thermography and Human Thermoregulation. In: Priego Quesada, J. (eds) Application of Infrared Thermography in Sports Science. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-47410-6_2

Download citation

Publish with us

Policies and ethics