Skip to main content

Issues and Future Developments of Infrared Thermography in Sports Science

  • Chapter
  • First Online:
Application of Infrared Thermography in Sports Science

Abstract

Although currently infrared thermography has a great number of applications in sports science, there are a number of different aspects that need to be investigated in order to improve the technique, the methodology, the analysis and to increase its application areas. In this chapter, we discuss the issues with and possible developments in infrared thermography in sport science, in order to facilitate future R&D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715

    Article  Google Scholar 

  2. Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. doi:10.1016/j.jtherbio.2013.04.005

    Article  Google Scholar 

  3. Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385

    Article  Google Scholar 

  4. Ring EFJ, Ammer K (2000) The technique of infrared imaging in medicine. Thermol Int 10:7–14

    Google Scholar 

  5. Vardasca R, Simoes R (2013) Current issues in medical thermography. In: Topics in medical image processing and computational vision. Springer, pp 223–237

    Google Scholar 

  6. Bach AJ, Stewart IB, Minett GM, Costello JT (2015) Does the technique employed for skin temperature assessment alter outcomes? A systematic review. Physiol Meas 36:R27

    Article  ADS  Google Scholar 

  7. Howell KJ, Smith RE (2009) Guidelines for specifying and testing a thermal camera for medical applications. Thermol Int 19:3–14

    Google Scholar 

  8. ISO (2008) Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening. TC121/SC3-IEC SC62D:

    Google Scholar 

  9. Ring EFJ, Jung A, Kalicki B et al (2015) New standards for fever screening with thermal imaging systems. Infrared Imaging

    Google Scholar 

  10. Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97:327–332. doi:10.1113/expphysiol.2011.061002

    Article  Google Scholar 

  11. Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. doi:10.1016/j.jtherbio.2014.04.002

    Article  Google Scholar 

  12. Cheng T-Y, Deng D, Herman C (2012) Curvature effect quantification for in-vivo IR thermography. Int Mech Eng Congr Expo 2:1–16. doi:10.1115/IMECE2012-88105

    Google Scholar 

  13. Grubišić I, Gjenero L, Lipić T et al (2011) Active 3D scanning based 3D thermography system and medical applications. In: 2011 Proceedings of the 34th International Convention MIPRO, pp 269–273

    Google Scholar 

  14. de Souza MA, Sanches IJ, Gamba HR, Nohama P (2013) Image fusion improvements applied at the generation of 3D thermal models. Conf Proc IEEE Eng Med Biol Soc 2013:3371–3374. doi:10.1109/EMBC.2013.6610264

    Google Scholar 

  15. Abreu de Souza M, Chagas Paz AA, Sanches IJ et al (2014) 3D thermal medical image visualization tool: integration between MRI and thermographic images. Conf Proc IEEE Eng Med Biol Soc 2014:5583–5586. doi:10.1109/EMBC.2014.6944892

    Google Scholar 

  16. Vardasca R (2008) Template based alignment and interpolation methods comparison of regions of interest in thermal images. In: Proceedings of the 3rd Research Student Workshop, Faculty of Advanced Technology, University of Glamorgan, Glamorgan Business Center, UK, pp 21–24

    Google Scholar 

  17. Ring EFJ, Ammer K, Wiecek B et al (2007) Quality assurance for thermal imaging systems in medicine. Thermol Int 17:103–106

    Google Scholar 

  18. Vardasca R, Gabriel J, Plassmann P, Ring EFJ (2014) Towards a medical imaging standard capture and analysis software

    Google Scholar 

  19. Jones BF, Plassmann P (2002) Digital infrared thermal imaging of human skin. Eng Med Biol Mag IEEE 21:41–48

    Article  Google Scholar 

  20. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235

    Article  ADS  Google Scholar 

  21. Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. doi:10.1088/0967-3334/29/4/007

    Article  Google Scholar 

  22. Fernández-Cuevas I, Sillero-Quintana M, Garcia-Concepcion MA et al (2014) Monitoring skin thermal response to training with infrared thermography. New Stud Athl 29:57–71

    Google Scholar 

  23. Vardasca R, Gabriel J, Jones CD, Ring EFJ (2014) A template based method for normalizing thermal images of the human body. QIRT2014

    Google Scholar 

  24. Barcelos EZ, Caminhas WM, Ribeiro E et al (2014) A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images. Sensors 14:21950–21967. doi:10.3390/s141121950

    Article  Google Scholar 

  25. Hildebrandt C, Zeilberger K, Ring EFJ, Raschner C (2012) The application of medical infrared thermography in sports medicine. Ultrasound 10:2

    Google Scholar 

  26. Barnes RB (1963) Thermography of the human body. Science 140:870–877

    Article  ADS  Google Scholar 

  27. Togawa T, Saito H (1994) Non-contact imaging of thermal properties of the skin. Physiol Meas 15:291. doi:10.1088/0967-3334/15/3/007

    Article  Google Scholar 

  28. Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol 71:28–55. doi:10.1016/j.infrared.2015.02.007

    Article  ADS  Google Scholar 

  29. Merla A, Mattei PA, Di Donato L, Romani GL (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann Biomed Eng 38:158–163. doi:10.1007/s10439-009-9809-8

    Article  Google Scholar 

  30. Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871. doi:10.1007/s10439-012-0718-x

    Article  Google Scholar 

  31. Abate M, Di Carlo L, Di Donato L et al (2013) Comparison of cutaneous termic response to a standardised warm up in trained and untrained individuals. J Sports Med Phys Fitness 53:209–215

    Google Scholar 

  32. Ludwig N, Formenti D, Gargano M, Alberti G (2014) Skin temperature evaluation by infrared thermography: comparison of image analysis methods. Infrared Phys Technol 62:1–6

    Article  ADS  Google Scholar 

  33. Ammer K (2011) Repeatability of identification of hot spots in thermal images is influenced by image processing. Thermol Int 21:40–46

    Google Scholar 

  34. Watmough DJ, Fowler PW, Oliver R (1970) The thermal scanning of a curved isothermal surface: implications for clinical thermography. Phys Med Biol 15:1. doi:10.1088/0031-9155/15/1/301

    Article  Google Scholar 

  35. Swerdlow B, Dieter JNI (1992) An evaluation of the sensitivity and specificity of medical thermography for the documentation of myofascial trigger points. Pain 48:205–213. doi:10.1016/0304-3959(92)90060-O

    Article  Google Scholar 

  36. Ohashi Y, Uchida I (2000) Applying dynamic thermography in the diagnosis of breast cancer. IEEE Eng Med Biol Mag 19:42–51. doi:10.1109/51.844379

    Article  Google Scholar 

  37. McCoy M, Campbell I, Stone P et al (2011) Intra-examiner and inter-examiner reproducibility of paraspinal thermography. PLoS ONE 6:e16535. doi:10.1371/journal.pone.0016535

    Article  ADS  Google Scholar 

  38. Priego Quesada JI, Carpes FP, Salvador Palmer R et al (2016) Effect of saddle height on skin temperature measured in different days of cycling. SpringerPlus 5:205–214. doi:10.1186/s40064-016-1843-z

    Article  Google Scholar 

  39. Houdas Y, Ring EFJ (2013) Human body temperature: its measurement and regulation. Springer Science & Business Media

    Google Scholar 

  40. Tortora G, Grabowski (2003) Principles of anatomy and physiology, 10th edn. Wiley, New York

    Google Scholar 

  41. Ferreira JJA, Mendonça LCS, Nunes LAO et al (2008) Exercise-associated thermographic changes in young and elderly subjects. Ann Biomed Eng 36:1420–1427. doi:10.1007/s10439-008-9512-1

    Article  Google Scholar 

  42. Priego Quesada JI, Carpes FP, Bini RR et al (2015) Relationship between skin temperature and muscle activation during incremental cycle exercise. J Therm Biol 48:28–35. doi:10.1016/j.jtherbio.2014.12.005

    Article  Google Scholar 

  43. Priego Quesada JI, Martínez N, Salvador Palmer R et al (2016) Effects of the cycling workload on core and local skin temperatures. Exp Therm Fluid Sci 77:91–99. doi:10.1016/j.expthermflusci.2016.04.008

    Article  Google Scholar 

  44. Krustrup P, Ferguson RA, Kjær M, Bangsbo J (2003) ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J Physiol 549:255–269. doi:10.1113/jphysiol.2002.035089

    Article  Google Scholar 

  45. González-Alonso J (2012) Human thermoregulation and the cardiovascular system. Exp Physiol 97:340–346. doi:10.1113/expphysiol.2011.058701

    Article  Google Scholar 

  46. Fujii N, Honda Y, Komura K et al (2014) Effect of voluntary hypocapnic hyperventilation on the relationship between core temperature and heat loss responses in exercising humans. J Appl Physiol 117:1317–1324. doi:10.1152/japplphysiol.00334.2014

    Article  Google Scholar 

  47. Havenith G, Fogarty A, Bartlett R et al (2008) Male and female upper body sweat distribution during running measured with technical absorbents. Eur J Appl Physiol 104:245–255

    Article  Google Scholar 

  48. Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. doi:10.1007/s00421-010-1744-8

    Article  Google Scholar 

  49. Priego Quesada JI, Martínez Guillamón N, Ortiz Cibrián, de Anda RM et al (2015) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi:10.1016/j.infrared.2015.07.008

    Article  Google Scholar 

  50. Ammer K (2009) Does neuromuscular thermography record nothing else but an infrared sympathetic skin response? Thermol Int 19:107–108

    Google Scholar 

  51. Zaidi H, Fohanno S, Polidori G, Taiar R (2007) The influence of swimming type on the skin-temperature maps of a competitive swimmer from infrared thermography. Acta Bioeng Biomech 9:47

    Google Scholar 

  52. Novotny J, Rybarova S, Zacha D et al (2015) The influence of breaststroke swimming on the muscle activity of young men in thermographic imaging. Acta Bioeng Biomech 17:121

    Google Scholar 

  53. Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi:10.1016/j.jtherbio.2015.06.005

    Article  Google Scholar 

  54. Priego Quesada JI, Lucas-Cuevas AG, Salvador Palmer R et al (2016) Definition of the thermographic regions of interest in cycling by using a factor analysis. Infrared Phys Technol 75:180–186. doi:10.1016/j.infrared.2016.01.014

    Article  ADS  Google Scholar 

  55. de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189

    Article  Google Scholar 

  56. James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. doi:10.1016/j.jtherbio.2014.08.010

    Article  Google Scholar 

  57. Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300

    Article  Google Scholar 

  58. Psikuta A, Niedermann R, Rossi RM (2013) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol 1–9

    Google Scholar 

  59. Charkoudian N (2016) Human thermoregulation from the autonomic perspective. Auton Neurosci Basic Clin 196:1–2. doi:10.1016/j.autneu.2016.02.007

    Article  Google Scholar 

  60. Eglin CM, Golden FS, Tipton MJ (2013) Cold sensitivity test for individuals with non-freezing cold injury: the effect of prior exercise. Extreme Physiol Med 2:16. doi:10.1186/2046-7648-2-16

    Article  Google Scholar 

  61. Keramidas ME, Kounalakis SN, Eiken O, Mekjavic IB (2015) Effects of two short-term, intermittent hypoxic training protocols on the finger temperature response to local cold stress. High Alt Med Biol 16:251–260. doi:10.1089/ham.2015.0013

    Article  Google Scholar 

  62. Keramidas ME, Kölegård R, Mekjavic IB, Eiken O (2015) Hand temperature responses to local cooling after a 10-day confinement to normobaric hypoxia with and without exercise. Scand J Med Sci Sports 25:650–660. doi:10.1111/sms.12291

    Article  Google Scholar 

  63. Cholewka A, Stanek A, Sieroń A, Drzazga Z (2012) Thermography study of skin response due to whole-body cryotherapy. Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI 18:180–187. doi:10.1111/j.1600-0846.2011.00550.x

    Google Scholar 

  64. Dębiec-Bąk A, Pawik Ł, Skrzek A Thermoregulation of football players after cryotherapy in thermography. J Therm Anal Calorim 1–12

    Google Scholar 

  65. Davey M, Eglin C, House J, Tipton M (2013) The contribution of blood flow to the skin temperature responses during a cold sensitivity test. Eur J Appl Physiol 113:2411–2417. doi:10.1007/s00421-013-2678-8

    Article  Google Scholar 

  66. Coughlin PA, Chetter IC, Kent PJ, Kester RC (2001) The analysis of sensitivity, specificity, positive predictive value and negative predictive value of cold provocation thermography in the objective diagnosis of the hand–arm vibration syndrome. Occup Med 51:75–80. doi:10.1093/occmed/51.2.075

    Article  Google Scholar 

  67. Antonio-Rubio I, Madrid-Navarro CJ, Salazar-López E et al (2015) Abnormal thermography in Parkinson’s disease. Parkinsonism Relat Disord 21:852–857. doi:10.1016/j.parkreldis.2015.05.006

    Article  Google Scholar 

  68. Nybo L (2010) Cycling in the heat: performance perspectives and cerebral challenges. Scand J Med Sci Sports 20(Suppl 3):71–79. doi:10.1111/j.1600-0838.2010.01211.x

    Article  Google Scholar 

  69. Castellani JW, Young AJ (2016) Human physiological responses to cold exposure: acute responses and acclimatization to prolonged exposure. Auton Neurosci 196:63–74. doi:10.1016/j.autneu.2016.02.009

    Article  Google Scholar 

  70. Périard JD, Travers GJS, Racinais S, Sawka MN (2016) Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 196:52–62. doi:10.1016/j.autneu.2016.02.002

    Article  Google Scholar 

  71. Marins JCB, Moreira DG, Cano SP et al (2014) Time required to stabilize thermographic images at rest. Infrared Phys Technol 65:30–35. doi:10.1016/j.infrared.2014.02.008

    Article  ADS  Google Scholar 

  72. Akimov EB, Son’kin VD (2011) Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol 37:621–628

    Google Scholar 

  73. Whay HR, Bell MJ, Main DCJ (2004) Validation of lame limb identification through thermal imaging. In: Proceedings of the 13th International Symposium and 5th Conference on Lameness in Ruminants, Maribor, Slovenia, pp 11–15

    Google Scholar 

  74. Stokes JE, Leach KA, Main DCJ, Whay HR (2012) An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet J 193:674–678

    Article  Google Scholar 

  75. Bouzas Marins JC, de Andrade Fernandes A, Gomes Moreira D et al (2014) Thermographic profile of soccer players’ lower limbs. Rev Andal Med Deporte 7:1–6. doi:10.1016/S1888-7546(14)70053-X

    Article  Google Scholar 

  76. Bertmaring I, Babski-Reeves K, Nussbaum MA (2008) Infrared imaging of the anterior deltoid during overhead static exertions. Ergonomics 51:1606–1619. doi:10.1080/00140130802216933

    Article  Google Scholar 

  77. Vardasca R, Ring F, Plassmann P, Jones C (2012) Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol Int 22:53–60

    Google Scholar 

  78. Sillero-Quintana M, Fernández-Jaén T, Fernández-Cuevas I et al (2015) Infrared thermography as a support tool for screening and early diagnosis in emergencies. J Med Imaging Health Inform 5:1223–1228

    Article  Google Scholar 

  79. Sun P-C, Jao S-HE, Cheng C-K (2005) Assessing foot temperature using infrared thermography. Foot Ankle Int 26:847–853. doi:10.1177/107110070502601010

    Google Scholar 

  80. Haddad DS, Brioschi ML, Vardasca R et al (2014) Thermographic characterization of masticatory muscle regions in volunteers with and without myogenous temporomandibular disorder: preliminary results. Dentomaxillofacial Radiol 43:20130440. doi:10.1259/dmfr.20130440

    Article  Google Scholar 

  81. Savastano DM, Gorbach AM, Eden HS et al (2009) Adiposity and human regional body temperature. Am J Clin Nutr 90:1124–1131. doi:10.3945/ajcn.2009.27567

    Article  Google Scholar 

  82. Chudecka M, Lubkowska A, Kempińska-Podhorodecka A (2014) Body surface temperature distribution in relation to body composition in obese women. J Therm Biol 43:1–6. doi:10.1016/j.jtherbio.2014.03.001

    Article  Google Scholar 

  83. Johnson W, de Ruiter I, Kyvik KO et al (2014) Genetic and environmental transactions underlying the association between physical fitness/physical exercise and body composition. Behav Genet. doi:10.1007/s10519-014-9690-6

    Google Scholar 

  84. Ng E-K (2009) A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci 48:849–859

    Article  Google Scholar 

  85. Connolly DAJ, Sayers SP, McHugh MP (2003) Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res 17:197–208

    Google Scholar 

  86. Ryu JH, Paik IY, Woo JH et al (2016) Impact of different running distances on muscle and lymphocyte DNA damage in amateur marathon runners. J Phys Ther Sci 28:450–455. doi:10.1589/jpts.28.450

    Article  Google Scholar 

  87. Kenny GP, Webb P, Ducharme MB et al (2008) Calorimetric measurement of postexercise net heat loss and residual body heat storage. Med Sci Sports Exerc 40:1629–1636

    Article  Google Scholar 

  88. Johnson JM, Kellogg DL (2010) Local thermal control of the human cutaneous circulation. J Appl Physiol Bethesda Md 1985 109:1229–1238. doi:10.1152/japplphysiol.00407.2010

    Google Scholar 

  89. Naperalsky M, Ruby B, Slivka D (2010) Environmental temperature and glycogen resynthesis. Int J Sports Med 31:561–566. doi:10.1055/s-0030-1254083

    Article  Google Scholar 

  90. West DWD, Burd NA, Staples AW, Phillips SM (2010) Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process. Int J Biochem Cell Biol 42:1371–1375. doi:10.1016/j.biocel.2010.05.012

    Article  Google Scholar 

  91. Al-Nakhli HH, Petrofsky JS, Laymon MS, Berk LS (2012) The use of thermal infra-red imaging to detect delayed onset muscle soreness. J Vis Exp. doi:10.3791/3551

    Google Scholar 

  92. Neves EB, Moreira TR, Lemos R et al (2015) The thermal response of biceps brachii to strength training. Gazzetta Medica Ital. Arch. Sci. Mediche 174:

    Google Scholar 

  93. Rossignoli I, Fernández-Cuevas I, Benito PJ, Herrero AJ (2016) Relationship between shoulder pain and skin temperature measured by infrared thermography in a wheelchair propulsion test. Infrared Phys Technol 76:251–258

    Article  ADS  Google Scholar 

  94. Fujimasa I, Saito I, Chinzei T (1997) Far infrared medical image database on World Wide Web. In: Proceedings of the 19th Annual International Conference IEEE on Engineering in Medicine Biology Society, vol 2, 1997. pp 652–653

    Google Scholar 

  95. Marins JCB, Fernandes AA, Cano SP et al (2014) Thermal body patterns for healthy Brazilian adults (male and female). J Therm Biol 42:1–8

    Article  Google Scholar 

  96. Ammer K (2015) Do we need reference data of local skin temperatures? Thermol Int 25:45–47

    Google Scholar 

  97. Chudecka M, Lubkowska A (2015) Thermal maps of young women and men. Infrared Phys Technol 69:81–87. doi:10.1016/j.infrared.2015.01.012

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Ignacio Priego Quesada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Priego Quesada, J.I., Vardasca, R. (2017). Issues and Future Developments of Infrared Thermography in Sports Science. In: Priego Quesada, J. (eds) Application of Infrared Thermography in Sports Science. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-47410-6_12

Download citation

Publish with us

Policies and ethics