Advertisement

Issues and Future Developments of Infrared Thermography in Sports Science

  • Jose Ignacio Priego QuesadaEmail author
  • Ricardo Vardasca
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Although currently infrared thermography has a great number of applications in sports science, there are a number of different aspects that need to be investigated in order to improve the technique, the methodology, the analysis and to increase its application areas. In this chapter, we discuss the issues with and possible developments in infrared thermography in sport science, in order to facilitate future R&D.

Keywords

Skin Temperature Thermal Image Preoptic Area Infrared Thermography Sport Science 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715CrossRefGoogle Scholar
  2. 2.
    Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. doi: 10.1016/j.jtherbio.2013.04.005 CrossRefGoogle Scholar
  3. 3.
    Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385CrossRefGoogle Scholar
  4. 4.
    Ring EFJ, Ammer K (2000) The technique of infrared imaging in medicine. Thermol Int 10:7–14Google Scholar
  5. 5.
    Vardasca R, Simoes R (2013) Current issues in medical thermography. In: Topics in medical image processing and computational vision. Springer, pp 223–237Google Scholar
  6. 6.
    Bach AJ, Stewart IB, Minett GM, Costello JT (2015) Does the technique employed for skin temperature assessment alter outcomes? A systematic review. Physiol Meas 36:R27ADSCrossRefGoogle Scholar
  7. 7.
    Howell KJ, Smith RE (2009) Guidelines for specifying and testing a thermal camera for medical applications. Thermol Int 19:3–14Google Scholar
  8. 8.
    ISO (2008) Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening. TC121/SC3-IEC SC62D:Google Scholar
  9. 9.
    Ring EFJ, Jung A, Kalicki B et al (2015) New standards for fever screening with thermal imaging systems. Infrared ImagingGoogle Scholar
  10. 10.
    Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97:327–332. doi: 10.1113/expphysiol.2011.061002 CrossRefGoogle Scholar
  11. 11.
    Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. doi: 10.1016/j.jtherbio.2014.04.002 CrossRefGoogle Scholar
  12. 12.
    Cheng T-Y, Deng D, Herman C (2012) Curvature effect quantification for in-vivo IR thermography. Int Mech Eng Congr Expo 2:1–16. doi: 10.1115/IMECE2012-88105 Google Scholar
  13. 13.
    Grubišić I, Gjenero L, Lipić T et al (2011) Active 3D scanning based 3D thermography system and medical applications. In: 2011 Proceedings of the 34th International Convention MIPRO, pp 269–273Google Scholar
  14. 14.
    de Souza MA, Sanches IJ, Gamba HR, Nohama P (2013) Image fusion improvements applied at the generation of 3D thermal models. Conf Proc IEEE Eng Med Biol Soc 2013:3371–3374. doi: 10.1109/EMBC.2013.6610264 Google Scholar
  15. 15.
    Abreu de Souza M, Chagas Paz AA, Sanches IJ et al (2014) 3D thermal medical image visualization tool: integration between MRI and thermographic images. Conf Proc IEEE Eng Med Biol Soc 2014:5583–5586. doi: 10.1109/EMBC.2014.6944892 Google Scholar
  16. 16.
    Vardasca R (2008) Template based alignment and interpolation methods comparison of regions of interest in thermal images. In: Proceedings of the 3rd Research Student Workshop, Faculty of Advanced Technology, University of Glamorgan, Glamorgan Business Center, UK, pp 21–24Google Scholar
  17. 17.
    Ring EFJ, Ammer K, Wiecek B et al (2007) Quality assurance for thermal imaging systems in medicine. Thermol Int 17:103–106Google Scholar
  18. 18.
    Vardasca R, Gabriel J, Plassmann P, Ring EFJ (2014) Towards a medical imaging standard capture and analysis softwareGoogle Scholar
  19. 19.
    Jones BF, Plassmann P (2002) Digital infrared thermal imaging of human skin. Eng Med Biol Mag IEEE 21:41–48CrossRefGoogle Scholar
  20. 20.
    Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235ADSCrossRefGoogle Scholar
  21. 21.
    Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. doi: 10.1088/0967-3334/29/4/007 CrossRefGoogle Scholar
  22. 22.
    Fernández-Cuevas I, Sillero-Quintana M, Garcia-Concepcion MA et al (2014) Monitoring skin thermal response to training with infrared thermography. New Stud Athl 29:57–71Google Scholar
  23. 23.
    Vardasca R, Gabriel J, Jones CD, Ring EFJ (2014) A template based method for normalizing thermal images of the human body. QIRT2014Google Scholar
  24. 24.
    Barcelos EZ, Caminhas WM, Ribeiro E et al (2014) A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images. Sensors 14:21950–21967. doi: 10.3390/s141121950 CrossRefGoogle Scholar
  25. 25.
    Hildebrandt C, Zeilberger K, Ring EFJ, Raschner C (2012) The application of medical infrared thermography in sports medicine. Ultrasound 10:2Google Scholar
  26. 26.
    Barnes RB (1963) Thermography of the human body. Science 140:870–877ADSCrossRefGoogle Scholar
  27. 27.
    Togawa T, Saito H (1994) Non-contact imaging of thermal properties of the skin. Physiol Meas 15:291. doi: 10.1088/0967-3334/15/3/007 CrossRefGoogle Scholar
  28. 28.
    Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol 71:28–55. doi: 10.1016/j.infrared.2015.02.007 ADSCrossRefGoogle Scholar
  29. 29.
    Merla A, Mattei PA, Di Donato L, Romani GL (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann Biomed Eng 38:158–163. doi: 10.1007/s10439-009-9809-8 CrossRefGoogle Scholar
  30. 30.
    Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871. doi: 10.1007/s10439-012-0718-x CrossRefGoogle Scholar
  31. 31.
    Abate M, Di Carlo L, Di Donato L et al (2013) Comparison of cutaneous termic response to a standardised warm up in trained and untrained individuals. J Sports Med Phys Fitness 53:209–215Google Scholar
  32. 32.
    Ludwig N, Formenti D, Gargano M, Alberti G (2014) Skin temperature evaluation by infrared thermography: comparison of image analysis methods. Infrared Phys Technol 62:1–6ADSCrossRefGoogle Scholar
  33. 33.
    Ammer K (2011) Repeatability of identification of hot spots in thermal images is influenced by image processing. Thermol Int 21:40–46Google Scholar
  34. 34.
    Watmough DJ, Fowler PW, Oliver R (1970) The thermal scanning of a curved isothermal surface: implications for clinical thermography. Phys Med Biol 15:1. doi: 10.1088/0031-9155/15/1/301 CrossRefGoogle Scholar
  35. 35.
    Swerdlow B, Dieter JNI (1992) An evaluation of the sensitivity and specificity of medical thermography for the documentation of myofascial trigger points. Pain 48:205–213. doi: 10.1016/0304-3959(92)90060-O CrossRefGoogle Scholar
  36. 36.
    Ohashi Y, Uchida I (2000) Applying dynamic thermography in the diagnosis of breast cancer. IEEE Eng Med Biol Mag 19:42–51. doi: 10.1109/51.844379 CrossRefGoogle Scholar
  37. 37.
    McCoy M, Campbell I, Stone P et al (2011) Intra-examiner and inter-examiner reproducibility of paraspinal thermography. PLoS ONE 6:e16535. doi: 10.1371/journal.pone.0016535 ADSCrossRefGoogle Scholar
  38. 38.
    Priego Quesada JI, Carpes FP, Salvador Palmer R et al (2016) Effect of saddle height on skin temperature measured in different days of cycling. SpringerPlus 5:205–214. doi: 10.1186/s40064-016-1843-z CrossRefGoogle Scholar
  39. 39.
    Houdas Y, Ring EFJ (2013) Human body temperature: its measurement and regulation. Springer Science & Business MediaGoogle Scholar
  40. 40.
    Tortora G, Grabowski (2003) Principles of anatomy and physiology, 10th edn. Wiley, New YorkGoogle Scholar
  41. 41.
    Ferreira JJA, Mendonça LCS, Nunes LAO et al (2008) Exercise-associated thermographic changes in young and elderly subjects. Ann Biomed Eng 36:1420–1427. doi: 10.1007/s10439-008-9512-1 CrossRefGoogle Scholar
  42. 42.
    Priego Quesada JI, Carpes FP, Bini RR et al (2015) Relationship between skin temperature and muscle activation during incremental cycle exercise. J Therm Biol 48:28–35. doi: 10.1016/j.jtherbio.2014.12.005 CrossRefGoogle Scholar
  43. 43.
    Priego Quesada JI, Martínez N, Salvador Palmer R et al (2016) Effects of the cycling workload on core and local skin temperatures. Exp Therm Fluid Sci 77:91–99. doi: 10.1016/j.expthermflusci.2016.04.008 CrossRefGoogle Scholar
  44. 44.
    Krustrup P, Ferguson RA, Kjær M, Bangsbo J (2003) ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J Physiol 549:255–269. doi: 10.1113/jphysiol.2002.035089 CrossRefGoogle Scholar
  45. 45.
    González-Alonso J (2012) Human thermoregulation and the cardiovascular system. Exp Physiol 97:340–346. doi: 10.1113/expphysiol.2011.058701 CrossRefGoogle Scholar
  46. 46.
    Fujii N, Honda Y, Komura K et al (2014) Effect of voluntary hypocapnic hyperventilation on the relationship between core temperature and heat loss responses in exercising humans. J Appl Physiol 117:1317–1324. doi: 10.1152/japplphysiol.00334.2014 CrossRefGoogle Scholar
  47. 47.
    Havenith G, Fogarty A, Bartlett R et al (2008) Male and female upper body sweat distribution during running measured with technical absorbents. Eur J Appl Physiol 104:245–255CrossRefGoogle Scholar
  48. 48.
    Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. doi: 10.1007/s00421-010-1744-8 CrossRefGoogle Scholar
  49. 49.
    Priego Quesada JI, Martínez Guillamón N, Ortiz Cibrián, de Anda RM et al (2015) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi: 10.1016/j.infrared.2015.07.008 CrossRefGoogle Scholar
  50. 50.
    Ammer K (2009) Does neuromuscular thermography record nothing else but an infrared sympathetic skin response? Thermol Int 19:107–108Google Scholar
  51. 51.
    Zaidi H, Fohanno S, Polidori G, Taiar R (2007) The influence of swimming type on the skin-temperature maps of a competitive swimmer from infrared thermography. Acta Bioeng Biomech 9:47Google Scholar
  52. 52.
    Novotny J, Rybarova S, Zacha D et al (2015) The influence of breaststroke swimming on the muscle activity of young men in thermographic imaging. Acta Bioeng Biomech 17:121Google Scholar
  53. 53.
    Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi: 10.1016/j.jtherbio.2015.06.005 CrossRefGoogle Scholar
  54. 54.
    Priego Quesada JI, Lucas-Cuevas AG, Salvador Palmer R et al (2016) Definition of the thermographic regions of interest in cycling by using a factor analysis. Infrared Phys Technol 75:180–186. doi: 10.1016/j.infrared.2016.01.014 ADSCrossRefGoogle Scholar
  55. 55.
    de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189CrossRefGoogle Scholar
  56. 56.
    James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. doi: 10.1016/j.jtherbio.2014.08.010 CrossRefGoogle Scholar
  57. 57.
    Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300CrossRefGoogle Scholar
  58. 58.
    Psikuta A, Niedermann R, Rossi RM (2013) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol 1–9Google Scholar
  59. 59.
    Charkoudian N (2016) Human thermoregulation from the autonomic perspective. Auton Neurosci Basic Clin 196:1–2. doi: 10.1016/j.autneu.2016.02.007 CrossRefGoogle Scholar
  60. 60.
    Eglin CM, Golden FS, Tipton MJ (2013) Cold sensitivity test for individuals with non-freezing cold injury: the effect of prior exercise. Extreme Physiol Med 2:16. doi: 10.1186/2046-7648-2-16 CrossRefGoogle Scholar
  61. 61.
    Keramidas ME, Kounalakis SN, Eiken O, Mekjavic IB (2015) Effects of two short-term, intermittent hypoxic training protocols on the finger temperature response to local cold stress. High Alt Med Biol 16:251–260. doi: 10.1089/ham.2015.0013 CrossRefGoogle Scholar
  62. 62.
    Keramidas ME, Kölegård R, Mekjavic IB, Eiken O (2015) Hand temperature responses to local cooling after a 10-day confinement to normobaric hypoxia with and without exercise. Scand J Med Sci Sports 25:650–660. doi: 10.1111/sms.12291 CrossRefGoogle Scholar
  63. 63.
    Cholewka A, Stanek A, Sieroń A, Drzazga Z (2012) Thermography study of skin response due to whole-body cryotherapy. Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI 18:180–187. doi: 10.1111/j.1600-0846.2011.00550.x Google Scholar
  64. 64.
    Dębiec-Bąk A, Pawik Ł, Skrzek A Thermoregulation of football players after cryotherapy in thermography. J Therm Anal Calorim 1–12Google Scholar
  65. 65.
    Davey M, Eglin C, House J, Tipton M (2013) The contribution of blood flow to the skin temperature responses during a cold sensitivity test. Eur J Appl Physiol 113:2411–2417. doi: 10.1007/s00421-013-2678-8 CrossRefGoogle Scholar
  66. 66.
    Coughlin PA, Chetter IC, Kent PJ, Kester RC (2001) The analysis of sensitivity, specificity, positive predictive value and negative predictive value of cold provocation thermography in the objective diagnosis of the hand–arm vibration syndrome. Occup Med 51:75–80. doi: 10.1093/occmed/51.2.075 CrossRefGoogle Scholar
  67. 67.
    Antonio-Rubio I, Madrid-Navarro CJ, Salazar-López E et al (2015) Abnormal thermography in Parkinson’s disease. Parkinsonism Relat Disord 21:852–857. doi: 10.1016/j.parkreldis.2015.05.006 CrossRefGoogle Scholar
  68. 68.
    Nybo L (2010) Cycling in the heat: performance perspectives and cerebral challenges. Scand J Med Sci Sports 20(Suppl 3):71–79. doi: 10.1111/j.1600-0838.2010.01211.x CrossRefGoogle Scholar
  69. 69.
    Castellani JW, Young AJ (2016) Human physiological responses to cold exposure: acute responses and acclimatization to prolonged exposure. Auton Neurosci 196:63–74. doi: 10.1016/j.autneu.2016.02.009 CrossRefGoogle Scholar
  70. 70.
    Périard JD, Travers GJS, Racinais S, Sawka MN (2016) Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 196:52–62. doi: 10.1016/j.autneu.2016.02.002 CrossRefGoogle Scholar
  71. 71.
    Marins JCB, Moreira DG, Cano SP et al (2014) Time required to stabilize thermographic images at rest. Infrared Phys Technol 65:30–35. doi: 10.1016/j.infrared.2014.02.008 ADSCrossRefGoogle Scholar
  72. 72.
    Akimov EB, Son’kin VD (2011) Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol 37:621–628Google Scholar
  73. 73.
    Whay HR, Bell MJ, Main DCJ (2004) Validation of lame limb identification through thermal imaging. In: Proceedings of the 13th International Symposium and 5th Conference on Lameness in Ruminants, Maribor, Slovenia, pp 11–15Google Scholar
  74. 74.
    Stokes JE, Leach KA, Main DCJ, Whay HR (2012) An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet J 193:674–678CrossRefGoogle Scholar
  75. 75.
    Bouzas Marins JC, de Andrade Fernandes A, Gomes Moreira D et al (2014) Thermographic profile of soccer players’ lower limbs. Rev Andal Med Deporte 7:1–6. doi: 10.1016/S1888-7546(14)70053-X CrossRefGoogle Scholar
  76. 76.
    Bertmaring I, Babski-Reeves K, Nussbaum MA (2008) Infrared imaging of the anterior deltoid during overhead static exertions. Ergonomics 51:1606–1619. doi: 10.1080/00140130802216933 CrossRefGoogle Scholar
  77. 77.
    Vardasca R, Ring F, Plassmann P, Jones C (2012) Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol Int 22:53–60Google Scholar
  78. 78.
    Sillero-Quintana M, Fernández-Jaén T, Fernández-Cuevas I et al (2015) Infrared thermography as a support tool for screening and early diagnosis in emergencies. J Med Imaging Health Inform 5:1223–1228CrossRefGoogle Scholar
  79. 79.
    Sun P-C, Jao S-HE, Cheng C-K (2005) Assessing foot temperature using infrared thermography. Foot Ankle Int 26:847–853. doi: 10.1177/107110070502601010 Google Scholar
  80. 80.
    Haddad DS, Brioschi ML, Vardasca R et al (2014) Thermographic characterization of masticatory muscle regions in volunteers with and without myogenous temporomandibular disorder: preliminary results. Dentomaxillofacial Radiol 43:20130440. doi: 10.1259/dmfr.20130440 CrossRefGoogle Scholar
  81. 81.
    Savastano DM, Gorbach AM, Eden HS et al (2009) Adiposity and human regional body temperature. Am J Clin Nutr 90:1124–1131. doi: 10.3945/ajcn.2009.27567 CrossRefGoogle Scholar
  82. 82.
    Chudecka M, Lubkowska A, Kempińska-Podhorodecka A (2014) Body surface temperature distribution in relation to body composition in obese women. J Therm Biol 43:1–6. doi: 10.1016/j.jtherbio.2014.03.001 CrossRefGoogle Scholar
  83. 83.
    Johnson W, de Ruiter I, Kyvik KO et al (2014) Genetic and environmental transactions underlying the association between physical fitness/physical exercise and body composition. Behav Genet. doi: 10.1007/s10519-014-9690-6 Google Scholar
  84. 84.
    Ng E-K (2009) A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci 48:849–859CrossRefGoogle Scholar
  85. 85.
    Connolly DAJ, Sayers SP, McHugh MP (2003) Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res 17:197–208Google Scholar
  86. 86.
    Ryu JH, Paik IY, Woo JH et al (2016) Impact of different running distances on muscle and lymphocyte DNA damage in amateur marathon runners. J Phys Ther Sci 28:450–455. doi: 10.1589/jpts.28.450 CrossRefGoogle Scholar
  87. 87.
    Kenny GP, Webb P, Ducharme MB et al (2008) Calorimetric measurement of postexercise net heat loss and residual body heat storage. Med Sci Sports Exerc 40:1629–1636CrossRefGoogle Scholar
  88. 88.
    Johnson JM, Kellogg DL (2010) Local thermal control of the human cutaneous circulation. J Appl Physiol Bethesda Md 1985 109:1229–1238. doi: 10.1152/japplphysiol.00407.2010 Google Scholar
  89. 89.
    Naperalsky M, Ruby B, Slivka D (2010) Environmental temperature and glycogen resynthesis. Int J Sports Med 31:561–566. doi: 10.1055/s-0030-1254083 CrossRefGoogle Scholar
  90. 90.
    West DWD, Burd NA, Staples AW, Phillips SM (2010) Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process. Int J Biochem Cell Biol 42:1371–1375. doi: 10.1016/j.biocel.2010.05.012 CrossRefGoogle Scholar
  91. 91.
    Al-Nakhli HH, Petrofsky JS, Laymon MS, Berk LS (2012) The use of thermal infra-red imaging to detect delayed onset muscle soreness. J Vis Exp. doi: 10.3791/3551 Google Scholar
  92. 92.
    Neves EB, Moreira TR, Lemos R et al (2015) The thermal response of biceps brachii to strength training. Gazzetta Medica Ital. Arch. Sci. Mediche 174:Google Scholar
  93. 93.
    Rossignoli I, Fernández-Cuevas I, Benito PJ, Herrero AJ (2016) Relationship between shoulder pain and skin temperature measured by infrared thermography in a wheelchair propulsion test. Infrared Phys Technol 76:251–258ADSCrossRefGoogle Scholar
  94. 94.
    Fujimasa I, Saito I, Chinzei T (1997) Far infrared medical image database on World Wide Web. In: Proceedings of the 19th Annual International Conference IEEE on Engineering in Medicine Biology Society, vol 2, 1997. pp 652–653Google Scholar
  95. 95.
    Marins JCB, Fernandes AA, Cano SP et al (2014) Thermal body patterns for healthy Brazilian adults (male and female). J Therm Biol 42:1–8CrossRefGoogle Scholar
  96. 96.
    Ammer K (2015) Do we need reference data of local skin temperatures? Thermol Int 25:45–47Google Scholar
  97. 97.
    Chudecka M, Lubkowska A (2015) Thermal maps of young women and men. Infrared Phys Technol 69:81–87. doi: 10.1016/j.infrared.2015.01.012 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jose Ignacio Priego Quesada
    • 1
    • 2
    Email author
  • Ricardo Vardasca
    • 3
  1. 1.Biophysics and Medical Physics Group, Department of PhysiologyUniversity of ValenciaValenciaSpain
  2. 2.Research Group in Sport Biomechanics (GIBD), Department of Physical Education and SportsUniversity of ValenciaValenciaSpain
  3. 3.LABIOMEP, UISPA/LAETA/INEGI, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations