Foot Temperature Assessment

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Thermographic studies of the foot can be very useful in 3 different ways: in preventing injury, in analyzing sporting technique and in assessing the effects of footwear and clothing. The aim of this chapter is to discuss several methodological points concerning the thermal analysis of the foot using infrared thermography, as well as to discuss how it can be applied to the science of sports, both in areas already researched and those as yet uninvestigated.


Thermal Comfort Sweat Gland Thermal Imaging Complex Regional Pain Syndrome Plantar Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nordin M, Frankel VH (2001) Basic biomechanics of the musculoskeletal system. Lippincott Williams & WilkinsGoogle Scholar
  2. 2.
    Taylor NA, Machado-Moreira CA, van den Heuvel AM, Caldwell JN (2014) Hands and feet: physiological insulators, radiators and evaporators. Eur J Appl Physiol 114:2037–2060CrossRefGoogle Scholar
  3. 3.
    Thibodeau GA, Patton KT (2007) Anatomía y fisiología. Elsevier EspañaGoogle Scholar
  4. 4.
    Hreljac A (2004) Impact and overuse injuries in runners. Med Sci Sports Exerc 845–849. doi: 10.1249/01.MSS.0000126803.66636.DD
  5. 5.
    Golden FSC, Francis TJR, Gallimore D, Pethybridge R (2013) Lessons from history: morbidity of cold injury in the Royal Marines during the Falklands Conflict of 1982. Extreme Physiol Med 2:23. doi: 10.1186/2046-7648-2-23 CrossRefGoogle Scholar
  6. 6.
    Johnson JM, Kellogg DL (2010) Local thermal control of the human cutaneous circulation. J Appl Physiol Bethesda Md 1985 109:1229–1238. doi: 10.1152/japplphysiol.00407.2010
  7. 7.
    Pérgola PE, Kellogg DL, Johnson JM et al (1993) Role of sympathetic nerves in the vascular effects of local temperature in human forearm skin. Am J Physiol 265:H785–792Google Scholar
  8. 8.
    Taylor WF, Johnson JM, O’Leary D, Park MK (1984) Effect of high local temperature on reflex cutaneous vasodilation. J Appl Physiol 57:191–196Google Scholar
  9. 9.
    Standring S (2015) Gray’s anatomy: the anatomical basis of clinical practice. Elsevier Health SciencesGoogle Scholar
  10. 10.
    Blair DA, Glover WE, Roddie IC (1960) Vasomotor fibres to skin in the upper arm, calf and thigh. J Physiol 153:232–238CrossRefGoogle Scholar
  11. 11.
    Roddie IC (2011) Circulation to skin and adipose tissue. Comprehensive physiology. Ed. American physiological society. doi: 10.1002/cphy.cp020310
  12. 12.
    Johnson JM, Pérgola PE, Liao FK, et al (1995) Skin of the dorsal aspect of human hands and fingers possesses an active vasodilator system. J Appl Physiol Bethesda Md 1985 78:948–954Google Scholar
  13. 13.
    Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78:603–612. doi: 10.4065/78.5.603 CrossRefGoogle Scholar
  14. 14.
    Chicharro JL, Vaquero AF (2006) Fisiología del ejercicio/Physiology of Exercise. Ed. Médica PanamericanaGoogle Scholar
  15. 15.
    Morrison SA, Gorjanc J, Mekjavic IB (2014) Mount Everest and Makalu cold injury amputation: 40 years on. High Altitude Med Biol 15:78–83. doi: 10.1089/ham.2013.1069 CrossRefGoogle Scholar
  16. 16.
    Taylor NA, Machado-Moreira CA (2013) Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extreme Physiol Med 2:4. doi: 10.1186/2046-7648-2-4 CrossRefGoogle Scholar
  17. 17.
    Shimazaki Y, Murata M (2015) Effect of gait on formation of thermal environment inside footwear. Appl Ergon 49:55–62. doi: 10.1016/j.apergo.2015.01.007 CrossRefGoogle Scholar
  18. 18.
    de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189CrossRefGoogle Scholar
  19. 19.
    Hildebrandt C, Zeilberger K, Ring EFJ, Raschner C (2012) The application of medical infrared thermography in sports medicine. Ultrasound 10:2Google Scholar
  20. 20.
    Mendes R, Sousa N, Almeida A et al (2015) Thermography: a technique for assessing the risk of developing diabetic foot disorders. Postgrad Med J 91:538. doi: 10.1136/postgradmedj-2015-133441 CrossRefGoogle Scholar
  21. 21.
    Wasner G, Schattschneider J, Baron R (2002) Skin temperature side differences–a diagnostic tool for CRPS? Pain 98:19–26CrossRefGoogle Scholar
  22. 22.
    Berry RJ, Kennedy AD, Scott SL et al (2003) Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: potential for mastitis detection. Can J Anim Sci 83:687–693. doi: 10.4141/A03-012 CrossRefGoogle Scholar
  23. 23.
    Alsaaod M, Büscher W (2012) Detection of hoof lesions using digital infrared thermography in dairy cows. J Dairy Sci 95:735–742. doi: 10.3168/jds.2011-4762 CrossRefGoogle Scholar
  24. 24.
    Bowers S, Gandy S, Anderson B et al (2009) Assessment of pregnancy in the late-gestation mare using digital infrared thermography. Theriogenology 72:372–377CrossRefGoogle Scholar
  25. 25.
    Nikkhah A, Plaizier JC, Einarson MS et al (2005) Short communication: infrared thermography and visual examination of hooves of dairy cows in two stages of lactation. J Dairy Sci 88:2749–2753. doi: 10.3168/jds.S0022-0302(05)72954-4 CrossRefGoogle Scholar
  26. 26.
    Alsaaod M, Schaefer AL, Büscher W, Steiner A (2015) The role of infrared thermography as a non-invasive tool for the detection of lameness in cattle. Sensors 15:14513–14525CrossRefGoogle Scholar
  27. 27.
    Oberle J, Elam M, Karlsson T, Wallin BG (1988) Temperature-dependent interaction between vasoconstrictor and vasodilator mechanisms in human skin. Acta Physiol Scand 132:459–469. doi: 10.1111/j.1748-1716.1988.tb08353.x CrossRefGoogle Scholar
  28. 28.
    Kakuta N, Yokoyama S, Mabuchi K (2002) Human thermal models for evaluating infrared images. Eng Med Biol Mag IEEE 21:65–72CrossRefGoogle Scholar
  29. 29.
    Sillero-Quintana M, Fernández-Jaén T, Fernández-Cuevas I et al (2015) Infrared thermography as a support tool for screening and early diagnosis in emergencies. J Med Imaging Health Inform 5:1223–1228CrossRefGoogle Scholar
  30. 30.
    Zaproudina N, Ming Z, Hänninen OO (2006) Plantar infrared thermography measurements and low back pain intensity. J Manipulative Physiol Ther 29:219–223CrossRefGoogle Scholar
  31. 31.
    Sousa P, Felizardo V, Oliveira D et al (2015) A review of thermal methods and technologies for diabetic foot assessment. Expert Rev Med Devices 12:439–448. doi: 10.1586/17434440.2015.1032251 CrossRefGoogle Scholar
  32. 32.
    Schaefer AL, Cook NJ, Luzi F, et al (2013) Heat generation and the role of infrared thermography in pathological conditions. Thermography Curr Status Adv Livestock Anim Vet Med 69–78Google Scholar
  33. 33.
    Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. doi: 10.1088/0967-3334/29/4/007 CrossRefGoogle Scholar
  34. 34.
    Priego Quesada JIP, Kunzler MR, da Rocha ES et al (2015) Plantar pressure and foot temperature responses to acute barefoot and shod running. Hum Mov 16:142–148. doi: 10.1515/humo-2015-0040 Google Scholar
  35. 35.
    Staffa E, Bernard V, Kubicek L, et al (2016) Infrared thermography as option for evaluating the treatment effect of percutaneous transluminal angioplasty by patients with peripheral arterial disease. Vascular. doi: 10.1177/1708538116640444
  36. 36.
    Marins JCB, Moreira DG, Cano SP et al (2014) Time required to stabilize thermographic images at rest. Infrared Phys Technol 65:30–35. doi: 10.1016/j.infrared.2014.02.008 ADSCrossRefGoogle Scholar
  37. 37.
    Ammer K (2008) The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol Int 18:125–144Google Scholar
  38. 38.
    Hall M, Shurr DG, Zimmerman MB, Saltzman CL (2004) Plantar foot surface temperatures with use of insoles. Iowa Orthop J 24:72–75Google Scholar
  39. 39.
    Sun P-C, Jao S-HE, Cheng C-K (2005) Assessing foot temperature using infrared thermography. Foot Ankle Int 26:847–853. doi: 10.1177/107110070502601010 Google Scholar
  40. 40.
    Bagavathiappan S, Philip J, Jayakumar T et al (2010) Correlation between plantar foot temperature and diabetic neuropathy: a case study by using an infrared thermal imaging technique. J Diabetes Sci Technol 4:1386–1392. doi: 10.1177/193229681000400613 CrossRefGoogle Scholar
  41. 41.
    Bharara M, Boulger E, Grewal GS, et al (2014) Applications of angiosome classification model for monitoring disease progression in the diabetic feet. In: Proceedings of the 2014 summer simulation multiconference society for computer simulation international, p 34Google Scholar
  42. 42.
    Mori T, Nagase T, Takehara K et al (2013) Morphological pattern classification system for plantar thermography of patients with diabetes. J Diabetes Sci Technol 7:1102–1112. doi: 10.1177/193229681300700502 CrossRefGoogle Scholar
  43. 43.
    Nagase T, Sanada H, Takehara K et al (2011) Variations of plantar thermographic patterns in normal controls and non-ulcer diabetic patients: novel classification using angiosome concept. J Plast Reconstr Aesthetic Surg 64:860–866CrossRefGoogle Scholar
  44. 44.
    Peregrina-Barreto H, Morales-Hernández LA, Rangel-Magdaleno JJ, Vázquez-Rodríguez PD (2013) Thermal image processing for quantitative determination of temperature variations in plantar angiosomes. In: 2013 IEEE international instrumentation measurement technology conference I2MTC, pp 816–820Google Scholar
  45. 45.
    Peregrina-Barreto H, Morales-Hernandez LA, Rangel-Magdaleno JJ, et al (2014) Quantitative estimation of temperature variations in plantar angiosomes: a study case for diabetic foot. Comput Math Methods Med. doi: 10.1155/2014/585306
  46. 46.
    Taylor GI, Palmer JH (1987) The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg 40:113–141CrossRefGoogle Scholar
  47. 47.
    Attinger CE, Evans KK, Bulan E et al (2006) Angiosomes of the foot and ankle and clinical implications for limb salvage: reconstruction, incisions, and revascularization. Plast Reconstr Surg 117:261S–293SCrossRefGoogle Scholar
  48. 48.
    Marins JCB, Fernández-Cuevas I, Arnaiz-Lastras J, et al (2015) Aplicaciones de la termografía infrarroja en el deporte: Una revisión. Rev. Int. Med. Cienc. Act. Física DeporteGoogle Scholar
  49. 49.
    Kuklane K (2004) The use of footwear insulation values measured on a thermal foot model. Int J Occup Saf Ergon 10:79–86CrossRefGoogle Scholar
  50. 50.
    Morey G, Mademli L (2015) El calzado deportivo. In: Perez-Soriano P, Llana-Belloch S, Biomecánica básica aplicada a la actividad física y el deporte. Ed. Paidotribo. pp 351–362Google Scholar
  51. 51.
    Dekker R, Kingma J, Groothoff JW et al (2000) Measurement of severity of sports injuries: an epidemiological study. Clin Rehabil 14:651–656CrossRefGoogle Scholar
  52. 52.
    Zwerver J (Hans) (2015) Sports injuries. In: Glaudemans AWJM, Dierckx RAJO, Gielen JLMA, Zwerver J (Hans) (eds) Nucl. Med. Radiol. Imaging Sports Inj. Springer Berlin Heidelberg, pp 49–67Google Scholar
  53. 53.
    Sobhani S, Dekker R, Postema K, Dijkstra PU (2013) Epidemiology of ankle and foot overuse injuries in sports: a systematic review. Scand J Med Sci Sports 23:669–686CrossRefGoogle Scholar
  54. 54.
    Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: A review. Infrared Phys Technol 71:28–55. doi: 10.1016/j.infrared.2015.02.007 ADSCrossRefGoogle Scholar
  55. 55.
    Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715CrossRefGoogle Scholar
  56. 56.
    Vardasca R (2008) Symmetry of temperature distribution in the upper and lower extremities. Thermol Int 18:154–155Google Scholar
  57. 57.
    Vardasca R, Ring F, Plassmann P, Jones C (2012) Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol Int 22:53–60Google Scholar
  58. 58.
    Vardasca R, Ring EFJ, Plassmann P, Jones CD (2007) Thermal symmetry on extremities of normal subjects. In: Conference in precedings of the first research student workshop on the faculty of advanced technology. University of Glamorgan, pp 19–24Google Scholar
  59. 59.
    Hardaker NJ, Moss AD, Richards J, et al (2007) The relationship between skin surface temperature measured via non-contact thermal imaging and intra-muscular temperature of the rectus femoris muscle. Studies 13:17Google Scholar
  60. 60.
    Niu HH, Lui PW, Hu JS, et al (2001) Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Zhonghua Yi Xue Za Zhi Chin Med J Free China Ed 64:459–468Google Scholar
  61. 61.
    Uematsu S, Edwin DH, Jankel WR et al (1988) Quantification of thermal asymmetry: Part 1: normal values and reproducibility. J Neurosurg 69:552–555CrossRefGoogle Scholar
  62. 62.
    Chuckpaiwong B, Nunley JA, Mall NA, Queen RM (2008) The effect of foot type on in-shoe plantar pressure during walking and running. Gait Posture 28:405–411CrossRefGoogle Scholar
  63. 63.
    Brand PW (2003) Tenderizing the Foot. Foot Ankle Int 24:457–461. doi: 10.1177/107110070302400602 Google Scholar
  64. 64.
    Yavuz M, Brem RW, Davis BL et al (2014) Temperature as a predictive tool for plantar triaxial loading. J Biomech 47:3767–3770CrossRefGoogle Scholar
  65. 65.
    Yavuz M, Delvadia N, Atves J, et al (2013) Biomechanical value of temperature in assessing plantar loading. Am Soc Biomech. Communication in the 37th annual meeting of the American Society of Biomechanics, Omaha, NEGoogle Scholar
  66. 66.
    Taiar R, Rebay M, Vannozzi G, et al (2008) Evolution of the in-shoe temperature during walking and running. Bio Eng Biomed Med 601–89Google Scholar
  67. 67.
    Lee Y-C, Lin G, Wang M-JJ (2012) Evaluating insole design with joint motion, plantar pressure and rating of perceived exertion measures. Work 41:1114–1117Google Scholar
  68. 68.
    Lucas-Cuevas AG, Pérez-Soriano P, Llana-Belloch S et al (2014) Effect of custom-made and prefabricated insoles on plantar loading parameters during running with and without fatigue. J Sports Sci 32:1712–1721. doi: 10.1080/02640414.2014.915422 CrossRefGoogle Scholar
  69. 69.
    Wrobel JS, Ammanath P, Le T et al (2014) A novel shear reduction insole effect on the thermal response to walking stress, balance, and gait. J Diabetes Sci Technol 8:1151–1156CrossRefGoogle Scholar
  70. 70.
    Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235ADSCrossRefGoogle Scholar
  71. 71.
    Liu C, van Netten JJ, van Baal JG et al (2015) Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis. J Biomed Opt 20:026003. doi: 10.1117/1.JBO.20.2.026003 CrossRefGoogle Scholar
  72. 72.
    Hashmi F, Richards BS, Forghany S et al (2013) The formation of friction blisters on the foot: The development of a laboratory-based blister creation model. Skin Res Technol 19:e479–e489. doi: 10.1111/j.1600-0846.2012.00669.x CrossRefGoogle Scholar
  73. 73.
    Basler RSW, Hunzeker CM, Garcia MA, Dexter W (2004) Athletic Skin Injuries. Phys Sportsmed 32:33–40. doi: 10.3810/psm.2004.05.304 CrossRefGoogle Scholar
  74. 74.
    Helm MF, Helm TN, Bergfeld FW (2012) Skin problems in the long-distance runner 2500 years after the Battle of Marathon. Int J Dermatol 51:263–270Google Scholar
  75. 75.
    Purim KSM, Leite N, Purim KSM, Leite N (2014) Sports-related dermatoses among road runners in Southern Brazil. An Bras Dermatol 89:587–592. doi: 10.1590/abd1806-4841.20142792 CrossRefGoogle Scholar
  76. 76.
    Honsik KA, Romeo MW, Hawley CJ et al (2007) Sideline skin and wound care for acute injuries. Curr Sports Med Rep 6:147–154Google Scholar
  77. 77.
    Mailler EA, Adams BB (2004) The wear and tear of 26.2: dermatological injuries reported on marathon day. Br J Sports Med 38:498–501. doi: 10.1136/bjsm.2004.011874 CrossRefGoogle Scholar
  78. 78.
    Van Tiggelen D, Wickes S, Coorevits P et al (2009) Sock systems to prevent foot blisters and the impact on overuse injuries of the knee joint. Mil Med 174:183–189. doi: 10.7205/MILMED-D-01-8508 CrossRefGoogle Scholar
  79. 79.
    Reynolds K, Darrigrand A, Roberts D et al (1995) Effects of an antiperspirant with emollients on foot-sweat accumulation and blister formation while walking in the heat. J Am Acad Dermatol 33:626–630. doi: 10.1016/0190-9622(95)91283-5 CrossRefGoogle Scholar
  80. 80.
    Kirkham S, Lam S, Nester C, Hashmi F (2014) The effect of hydration on the risk of friction blister formation on the heel of the foot. Skin Res Technol 20:246–253. doi: 10.1111/srt.12136 CrossRefGoogle Scholar
  81. 81.
    Hashmi F, Kirkham S, Nester C, Lam S The effect of topical anti blister products on the risk of friction blister formation on the foot. J Tissue Viability. doi: 10.1016/j.jtv.2016.04.002
  82. 82.
    Liu C, van der Heijden F, Klein ME, et al (2013) Infrared dermal thermography on diabetic feet soles to predict ulcerations: a case study. In: SPIE BiOS. International society for optics and photonics, pp 85720N–85720NGoogle Scholar
  83. 83.
    Hernandez-Contreras D, Peregrina-Barreto H, Rangel-Magdaleno J et al (2015) Automatic classification of thermal patterns in diabetic foot based on morphological pattern spectrum. Infrared Phys Technol 73:149–157. doi: 10.1016/j.infrared.2015.09.022 ADSCrossRefGoogle Scholar
  84. 84.
    International Diabetes Federation (2015) IDF diabetes atlas, 7th edn. International Diabetes Federation, Brussels, BelgiumGoogle Scholar
  85. 85.
    Armstrong DG, Holtz-Neiderer K, Wendel C et al (2007) Skin temperature monitoring reduces the risk for diabetic foot ulceration in high-risk patients. Am J Med 120:1042–1046. doi: 10.1016/j.amjmed.2007.06.028 CrossRefGoogle Scholar
  86. 86.
    Lavery LA, Armstrong DG, Vela SA et al (1998) Practical criteria for screening patients at high risk for diabetic foot ulceration. Arch Int Med 158:157–162CrossRefGoogle Scholar
  87. 87.
    Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J (2005) The global burden of diabetic foot disease. Lancet 366:1719–1724. doi: 10.1016/S0140-6736(05)67698-2 CrossRefGoogle Scholar
  88. 88.
    Armstrong DG, Lavery LA, Liswood PJ et al (1997) Infrared dermal thermometry for the high-risk diabetic foot. Phys Ther 77:169–175Google Scholar
  89. 89.
    Lavery LA, Higgins KR, Lanctot DR et al (2004) Home monitoring of foot skin temperatures to prevent ulceration. Diabetes Care 27:2642–2647. doi: 10.2337/diacare.27.11.2642 CrossRefGoogle Scholar
  90. 90.
    Balbinot LF, Canani LH, Robinson CC et al (2012) Plantar thermography is useful in the early diagnosis of diabetic neuropathy. Clinics 67:1419–1425CrossRefGoogle Scholar
  91. 91.
    van Netten JJ, Prijs M, van Baal JG et al (2014) Diagnostic values for skin temperature assessment to detect diabetes-related foot complications. Diabetes Technol Ther 16:714–721. doi: 10.1089/dia.2014.0052 CrossRefGoogle Scholar
  92. 92.
    Sun P-C, Lin H-D, Jao S-HE et al (2006) Relationship of skin temperature to sympathetic dysfunction in diabetic at-risk feet. Diabetes Res Clin Pract 73:41–46. doi: 10.1016/j.diabres.2005.12.012 CrossRefGoogle Scholar
  93. 93.
    van Netten JJ, Jannink MJA, Hijmans JM et al (2010) Long-term use of custom-made orthopedic shoes: 1.5-year follow-up study. J Rehabil Res Dev 47:643. doi: 10.1682/JRRD.2010.03.0040 CrossRefGoogle Scholar
  94. 94.
    Armstrong DG, Lavery LA, Wunderlich RP, Boulton AJM (2003) Skin temperatures as a one-time screening tool do not predict future diabetic foot complications. J Am Podiatr Med Assoc 93:443–447. doi: 10.7547/87507315-93-6-443 CrossRefGoogle Scholar
  95. 95.
    Armstrong DG, Lipsky BA, Polis AB, Abramson MA (2006) Does dermal thermometry predict clinical outcome in diabetic foot infection? Analysis of data from the SIDESTEP* trial. Int Wound J 3:302–307. doi: 10.1111/j.1742-481X.2006.00269.x CrossRefGoogle Scholar
  96. 96.
    van Netten JJ, van Baal JG, Liu C et al (2013) Infrared thermal imaging for automated detection of diabetic foot complications. J Diabetes Sci Technol 7:1122–1129CrossRefGoogle Scholar
  97. 97.
    Goodman PH, Heaslet MW, Pagliano JW, Rubin BD (1985) Stress fracture diagnosis by computer-assisted thermography. Phys Sportsmed 13:114–132CrossRefGoogle Scholar
  98. 98.
    Laird RC (2015) Acute forefoot and midfoot injuries. Clin Podiatr Med Surg 32:231–238CrossRefGoogle Scholar
  99. 99.
    DiBenedetto M (2002) Foot evaluation by infrared imaging. Mil Med 167:384Google Scholar
  100. 100.
    Niehof SP, Beerthuizen A, Huygen FJ, Zijlstra FJ (2008) Using skin surface temperature to differentiate between complex regional pain syndrome type 1 patients after a fracture and control patients with various complaints after a fracture. Anesth Analg 106:270–277CrossRefGoogle Scholar
  101. 101.
    Schmitt M, Guillot Y (1984) Thermography and muscular injuries in sports medicine. In: Recent advances medical thermology. Springer, pp 439–445Google Scholar
  102. 102.
    Bandeira F, Neves EB, de Moura MAM, Nohama P (2014) A termografia no apoio ao diagnóstico de lesão muscular no esporte. Rev Bras Med Esporte 20:59–64CrossRefGoogle Scholar
  103. 103.
    Bandeira F, de Moura MAM, de Souza MA et al (2012) Pode a termografia auxiliar no diagnóstico de lesões musculares em atletas de futebol? Rev Bras Med Esporte 18:246–251CrossRefGoogle Scholar
  104. 104.
    Barcelos EZ, Caminhas WM, Ribeiro E et al (2014) A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images. Sensors 14:21950–21967. doi: 10.3390/s141121950 CrossRefGoogle Scholar
  105. 105.
    Morales Ríos M, Medina Chacón E, Carnevali Fernández Á, Orozco Guillén E (2011) Termografía infrarroja y el estudio de riesgos de lesiones músculo esqueléticas. Rev Ing Ind 55–67Google Scholar
  106. 106.
    Al-Nakhli HH, Petrofsky JS, Laymon MS, Berk LS (2012) The use of thermal infra-red imaging to detect delayed onset muscle soreness. J Vis Exp. doi: 10.3791/3551 Google Scholar
  107. 107.
    Doherty C, Delahunt E, Caulfield B et al (2014) The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Med 44:123–140CrossRefGoogle Scholar
  108. 108.
    Tenforde AS, Yin A, Hunt KJ (2016) Foot and ankle injuries in runners. Phys Med Rehabil Clin N Am 27:121–137CrossRefGoogle Scholar
  109. 109.
    Oliveira J, Vardasca R, Pimenta M et al (2016) Use of infrared thermography for the diagnosis and grading of sprained ankle injuries. Infrared Phys Technol 76:530–541ADSCrossRefGoogle Scholar
  110. 110.
    Litscher G, Ofner M, Litscher D, others (2013) Manual Khalifa therapy in patients with completely ruptured anterior cruciate ligament in the knee: first preliminary results from thermal imaging. North Am J Med Sci 5:473Google Scholar
  111. 111.
    Ammer K (1996) Diagnosis of raynaud’s phenomenon by thermography. Skin Res Technol 2:182–185CrossRefGoogle Scholar
  112. 112.
    Cherkas LF, Carter L, Spector TD et al (2003) Use of thermographic criteria to identify Raynaud’s phenomenon in a population setting. J Rheumatol 30:720–722Google Scholar
  113. 113.
    Ring F (2016) The Herschel heritage to medical thermography. J Imaging 2:13CrossRefGoogle Scholar
  114. 114.
    Saito S, Ishii T, Kamogawa Y et al (2016) Extracorporeal shock wave therapy for digital ulcers of systemic sclerosis: a phase 2 pilot study. Tohoku J Exp Med 238:39–47CrossRefGoogle Scholar
  115. 115.
    Tse J, Rand C, Carroll M, et al (2015) Determining peripheral skin temperature: subjective versus objective measurements. Acta Paediatr 105:126–131. doi: 10.1111/apa.13283
  116. 116.
    Chlebicka I, Matusiak U, Maj J et al (2013) Freezing fingers syndrome, primary and secondary Raynaud’s phenomenon: characteristic features with hand thermography. Acta Derm Venereol 93:428–432CrossRefGoogle Scholar
  117. 117.
    Lim MJ, Kwon SR, Jung K-H et al (2014) Digital thermography of the fingers and toes in Raynaud’s phenomenon. J Korean Med Sci 29:502–506CrossRefGoogle Scholar
  118. 118.
    Block JA, Sequeira W (2001) Raynaud’s phenomenon. Lancet 357:2042–2048CrossRefGoogle Scholar
  119. 119.
    Tauchmannova H, Gabrhel J, Cibak M (1993) Thermographic findings in different sports, their value in the prevention of soft tissue injuries. Themol Osterr 3:91–95Google Scholar
  120. 120.
    Chudecka M, Lubkowska A, Leźnicka K, Krupecki K (2015) The use of thermal imaging in the evaluation of the symmetry of muscle activity in various types of exercises (symmetrical and asymmetrical). J Hum Kinet 49:141–147Google Scholar
  121. 121.
    Gil-Calvo M, Jimenez-Perez I, Priego Quesada JI, et al (2016) Could skin temperature predict ankle eversion after running? Book Abstract. 21st Annual Congress European College Sport Science. Vienna, AustriaGoogle Scholar
  122. 122.
    Stefanyshyn DJ, Wannop JW (2015) Biomechanics research and sport equipment development. Sports Eng 18:191–202. doi: 10.1007/s12283-015-0183-5 CrossRefGoogle Scholar
  123. 123.
    Barkley RM, Bumgarner MR, Poss EM, Senchina DS (2011) Physiological versus perceived foot temperature, and perceived comfort, during treadmill running in shoes and socks of various constructions. Am J Undergrad Res 10:7–14Google Scholar
  124. 124.
    Yamashita MH (2005) Evaluation and selection of shoe wear and orthoses for the runner. Phys Med Rehabil Clin N Am 16:801–829CrossRefGoogle Scholar
  125. 125.
    Covill D, Guan ZW, Bailey M, Raval H (2011) Development of thermal models of footwear using finite element analysis. Proc Inst Mech Eng [H] 225:268–281. doi: 10.1243/09544119JEIM860 Google Scholar
  126. 126.
    Fan J, Tsang HW (2008) Effect of clothing thermal properties on the thermal comfort sensation during active sports. Text Res J 78:111–118CrossRefGoogle Scholar
  127. 127.
    Luo G, Stergiou P, Worobets J et al (2009) Improved footwear comfort reduces oxygen consumption during running. Footwear Sci 1:25–29CrossRefGoogle Scholar
  128. 128.
    Purvis A, Tunstall H (2004) Effects of sock type on foot skin temperature and thermal demand during exercise. Ergonomics 47:1657–1668. doi: 10.1080/00140130412331290880 CrossRefGoogle Scholar
  129. 129.
    Shen WW, Gu YD, Bull AM (2013) Characteristic of foot surface temperature variety during continual low-intensity exercise. Biotechnol Indian J 7:352–356Google Scholar
  130. 130.
    Banerjee D, Chattopadhyay SK, Tuli S (2013) Infrared thermography in material research–a review of textile applications. Indian J Fiber Text Res 38:427–437Google Scholar
  131. 131.
    Kinoshita H, Bates BT (1996) The effect of environmental temperature on the properties of running shoes. J Appl Biomech 12:258–268Google Scholar
  132. 132.
    Park SJ, Tamura T (1992) Distribution of evaporation rate on human body surface. Ann Physiol Anthropol 11:593–609CrossRefGoogle Scholar
  133. 133.
    Smith CJ, Machado-Moreira CA, Plant G et al (2013) Design data for footwear: sweating distribution on the human foot. Int J Cloth Sci Technol 25:43–58CrossRefGoogle Scholar
  134. 134.
    Kuklane K, Geng Q, Holmér I (1998) Effect of footwear insulation on thermal responses in the cold. Int J Occup Saf Ergon 4:137–152CrossRefGoogle Scholar
  135. 135.
    Kuklane K, Gavhed D, Fredriksson K (2001) A field study in dairy farms: thermal condition of feet. Int J Ind Ergon 27:367–373CrossRefGoogle Scholar
  136. 136.
    Kuklane K, Afanasieva R, Burmistrova O et al (1999) Determination of heat loss from the feet and insulation of the footwear. Int J Occup Saf Ergon 5:465–476. doi: 10.1080/10803548.1999.11076432 CrossRefGoogle Scholar
  137. 137.
    Kuklane K, Ueno S, Sawada S-I, Holmér I (2009) Testing cold protection according to EN ISO 20344: is there any professional footwear that does not pass? Ann Occup Hyg 53:63–68. doi: 10.1093/annhyg/men074 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Research Group in Sport Biomechanics (GIBD), Department of Physical Education and SportsUniversity of ValenciaValenciaSpain
  2. 2.Biophysics and Medical Physics Group, Department of PhysiologyUniversity of ValenciaValenciaSpain

Personalised recommendations