Skip to main content

SiGe for Radiation Hardening: Spearheading Electronic Warfare in Space

  • Chapter
  • First Online:
SiGe-based Re-engineering of Electronic Warfare Subsystems

Part of the book series: Signals and Communication Technology ((SCT))

  • 1177 Accesses

Abstract

Space electronic warfare (SEW) implies tactical advantages in electronic attacks, electronic protection and electronic support using satellites in low-earth orbit (LEO) for surveillance, communications or positioning, or denying the enemy these activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The RS-485 standard is published by the Telecommunications Industry Association and Electronic Industries Alliance (TIA/EIA) for digital communications networks specifically used over long distances and noisy environments. The International Organization for Standardization (ISO) 11898 standard specifies the physical and datalink layers of serial communication that supports distributed real-time control and multiplexing.

References

  • Adell, P. C., Yager, J., Pannell, Z., Shelton, J., Mojarradi, M. M., Blalock, B., et al. (2014). Radiation hardening of an SiGe BiCMOS Wilkinson ADC for distributed motor controller application. IEEE Transactions on Nuclear Science, 61(3), 1236–1242.

    Article  Google Scholar 

  • Cressler, J. D. (2007). SiGe BiCMOS technology: An IC design platform for extreme environment electronics applications. In 45th Annual International Reliability Physics Symposium (pp. 141–149).

    Google Scholar 

  • Cressler, J. D. (2013). Radiation effects in SiGe technology. IEEE Transactions on Nuclear Science, 60(3), 1992–2014.

    Google Scholar 

  • Curtis, S. B., & Letaw, J. R. (1989). Galactic cosmic rays and cell-hit frequencies outside the magnetosphere. Advances in Space Research, 9(10), 293–298.

    Article  Google Scholar 

  • DeBlois, B. M., Garwin, R. L., Kemp, R. S., & Marwell, J. C. (2005). Star-crossed [space-based weapons]. IEEE Spectrum, 42(3), 40–49.

    Article  Google Scholar 

  • Dodd, P. E., Shaneyfelt, M. R., Schwank, J. R., & Felix, J. A. (2010). Current and future challenges in radiation effects on CMOS electronics. IEEE Transactions on Nuclear Science, 57(4), 1747–1763.

    Article  Google Scholar 

  • England, T., Chatterjee, C., Lourenco, N., Finn, S., Najafizadeh, L., Phillips, S., et al. (2014). Cold-Capable, radiation-hardened SiGe BiCMOS wireline transceivers. IEEE Aerospace and Electronic Systems Magazine, 29(3), 32–41.

    Article  Google Scholar 

  • Fossum, J. G., Derbenwick, G. F., & Gegory, B. L. (1975). Design optimization of radiation-hardened CMOS integrated circuits. IEEE Transactions on Nuclear Science, NS-22(6), 2208–2213.

    Article  Google Scholar 

  • Gaucher, B., Floyd, B., Reynolds, S., Pfeiffer, U., Grzyb, J., Joseph, A., et al. (2007). Silicon germanium based millimeter-wave ICs for Gbps wireless communications in radar systems. Semiconductor Science and Technology, 22(1), S236–S243.

    Article  Google Scholar 

  • Gussenhoven, M. S., & Mullen, E. G. (1993). Space radiation effects program. An overview. IEEE Transactions on Nuclear Science, 40(2), 221–227.

    Article  Google Scholar 

  • ICRP. (2007). The 2007 recommendations of the international commission on radiological protection. ICRP Publication, 103, 37, 2–4.

    Google Scholar 

  • IEEE. (2003). IEEE standard for letter designations for radar-frequency bands. IEEE-SA Standards Board. Approved January 21, 2003.

    Google Scholar 

  • Jung, S., Lourenco, N. E., Song, I., Oakley, M. A., England, T. D., Arora, R., et al. (2014). An investigation of single-event transients in C-SiGe HBT on SOI current mirror circuits. IEEE Transactions on Nuclear Science, 61(6), 3193–3200.

    Article  Google Scholar 

  • Kundu, S., Rajesh, G., Vijaykrishan, N., Raina, R., & Pia, S. (2005). Is the concern for soft-error overblown? In 2005 IEEE International Conference on Test (pp. 1–2), 2005

    Google Scholar 

  • Kuo, W. L., Krithivasan, R., Li, X., Lu, Y., Cressler, J. D., Gustat, H., et al. (2006). A low-power, X-band SiGe HBT low-noise amplifier for near-space radar applications. IEEE Microwave and Wireless Components Letters, 16(9), 520–522.

    Article  Google Scholar 

  • Label, K. A. (2004, April). NEPP Webex presentation—Radiation effects 101: Simple concepts and new challenges. NASA.

    Google Scholar 

  • Lu, Y., Cressler, J. D., Krithivasan, R., Li, Y., Reed, R. A., Marshall, P. W., et al. (2003). Proton tolerance of third-generation, 0.12 µm 185 GHz SiGe HBTs. IEEE Transactions on Nuclear Science, 50(6), 1811–1815.

    Article  Google Scholar 

  • Maiti, C. K., & Armstrong, G. A. (2001). Applications of silicon-germanium heterostructure devices. CRC Press. ISBN 1420034693, 2001.

    Google Scholar 

  • McLean, F. B., & Oldham, T. R. (1987). Basic mechanisms of radiation effects in electronic materials and devices. Harry Diamond Laboratories Technical Report. HDL-TR, 2129.

    Google Scholar 

  • Messenger, G. C. (1969). Radiation hardening of electronics systems. Invited paper. IEEE Transactions on Nuclear Science, 16(6), 160–168.

    Google Scholar 

  • Messenger, G. C., Spratt, J. P. (1958, June). The Effects of Neutron Irradiation on Silicon and Germanium. Proceedings of the IRE, 46(6), 1038–1044.

    Google Scholar 

  • Ohyama, H., Vanhellemont, J., Takami, Y., Hayama, K., Sunaga, H., Poortmans, J., et al. (1994). Germanium content dependence of radiation damage in strained Si1−xGex epitaxial devices. IEEE Transactions on Nuclear Science, 41(6), 2437–2442.

    Article  Google Scholar 

  • Oldham, T. R. (1984). Analysis of damage in MOS devices in several radiation environments. IEEE Transactions on Nuclear Science, 31(6), 1236–1241.

    Article  Google Scholar 

  • Petersen, E. L. (1998). The SEU figure of merit and proton upset rate calculations. IEEE Transactions on Nuclear Science, 45(6), 2550–2562.

    Google Scholar 

  • Preston, B., Johnson, D. J., Edwards, S. J. A., Miller, M., & Shipbaugh, C. (2002). Space weapons: Earth wars. Published by RAND Corporation. MR-I209-AF, 2002.

    Google Scholar 

  • Rice, J. S., Ullan, M., Brooijmans, G., Cressler, J. D., Damiani, D., Diez, S., et al. (2008). Performance of the SiGe HBT 8HP and 8WL technologies after high dose/fluence radiation exposure. In 2008 IEEE Nuclear Science Symposium Conference. N30-134, 2206–2210, 2008.

    Google Scholar 

  • Shah, T., Danziger, S., Moores, K., & Joshi, Y. (1998). Cyanate ester die attach material for radiation hardened electronic packages. Adhesive Joining and Coating Technology in Electronics Manufacturing, 49–54.

    Google Scholar 

  • Space Foundation. (2016). U.S. defense Space-based and—Related systems fiscal year 2016 budget comparison. Update 2. Retrieved May 3, 2016 from http://www.spacefoundation.org/

  • Srour, J. R. (1983). Basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. In 1983 Annual International Nuclear and Space Radiation Effects Conference, Short Course.

    Google Scholar 

  • Srour, J. R., Marshall, C. J., & Marshall, P. W. (2003). Review of displacement damage effects in silicon devices. IEEE Transactions on Nuclear Physics, 50(3), 653–670.

    Article  Google Scholar 

  • Srour, J. R., & McGarrity, J. M. (1988). Radiation effects on microelectronics in space. Proceedings of the IEEE, 76(11), 1443–1469.

    Google Scholar 

  • Teply, F. E., Venkitachalam, D., Sorge, R., Scholz, R. F., Heyer, H., Ullán, M., et al. (2011). Radiation hardness evaluation of a 0.25 µm SiGe BiCMOS technology with LDMOS module. In 12th European Conference on Radiation and Its Effects on Components and Systems (pp. 881–888), 2011.

    Google Scholar 

  • Texas Instruments. (1994). Application note AN-926. Radiation considerations using CMOS logic. Literature Number SNOA254A.

    Google Scholar 

  • Thrivikraman, T. K., Cheng, P., Phillips, S. D., Comeau, J. P., Morton, M. A., Cressler, J. D., et al. (2008). On the radiation tolerance of SiGe HBT and CMOS-based phase shifters for space-based, phased-array antenna system. IEEE Transactions on Nuclear Science, 55(6), 3246–3252.

    Article  Google Scholar 

  • Thrivikraman, T. K., Kuo, W. L., Comeau, J. P., Sutton, A. K., Cressler, J. D., Marshall, P. W., et al. (2007). A 2 mW, Sub-2 dB noise figure, SiGe low-noise amplifier for X-band high-altitude or space-based radar applications. In 2007 IEEE Radio Frequency Integrated Circuits Symposium (pp. 629–632), 2007.

    Google Scholar 

  • Yuan, J., Cressler, J. D., Krithivasan, R., Thrivikraman, T., Khater, M. H., Ahlgren, D. C., et al. (2009). On the performance limits of cryogenically operated SiGe HBTs and its relation to scaling for terahertz speeds. IEEE Transactions on Electron Devices, 56(5), 1007–1019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wynand Lambrechts .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lambrechts, W., Sinha, S. (2017). SiGe for Radiation Hardening: Spearheading Electronic Warfare in Space. In: SiGe-based Re-engineering of Electronic Warfare Subsystems. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47403-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47403-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47402-1

  • Online ISBN: 978-3-319-47403-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics