Skip to main content

Electronic Countermeasures and Directed Energy Weapons: Innovative Optoelectronics Versus Brute Force

  • Chapter
  • First Online:
SiGe-based Re-engineering of Electronic Warfare Subsystems

Part of the book series: Signals and Communication Technology ((SCT))

  • 1210 Accesses

Abstract

The relatively near future of EW will show significant advances in laser designators and new technologies in the offensive and defensive high-intensity laser pulse domain. Apart from the active research fields in various disciplines attaining laser and radar technology, the military laser systems market was estimated to be worth US $3.03 billion in 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The apparent brightness of a Lambertian surface is the same regardless of the viewing angle. A Lambertian surface defines a perfectly diffusely reflecting surface with isotropic (uniform in all directions) luminance.

  2. 2.

    The solid angle is the two-dimensional angle in three-dimensional space that an object subtends at a point—a measure of how large the object appears to an observer based on the distance and viewing angle.

  3. 3.

    OpenCV is available for academic and commercial use, free of charge, and is an open-source computer vision and machine learning software library that supports Microsoft® Windows®, Linux®, Google® Android® and Apple® Mac OS®.

References

  • Bates, R., Lynch, S. A., Paul, D. J., Ikonic, Z., Kelsall, R. W., Harrison, P., et al. (2002). THz electroluminescence from Si/SiGe quantum cascade heterostructures. Summaries of Lasers and Electro-Optics, 1, 629–630.

    Google Scholar 

  • Belkin, M. A., & Capasso, F. (2015). New frontiers in quantum cascade lasers: High performance room temperature terahertz sources. Physica Scripta, 90(2015), 118002 (1–13, 2015).

    Google Scholar 

  • Brändle, M. (2014). Pointing/tracking control design for a high energy laser system. In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 676–682).

    Google Scholar 

  • Burns, H. N., Christodoulou, C. G., & Boreman, G. D. (1991). System design of a pulsed laser rangefinder. Optical Electronics, 30(3), 323–328.

    Google Scholar 

  • Callaham, M. B. (1982). Military: Laser weapons: A variety of targets might be neutralized by laser beams, but only if weapons employing them can be utilized with great finesse. IEEE Spectrum, 19(3), 51–55.

    Google Scholar 

  • De-yun, Z., Li-na, Z., Kai, Z., & Kun, Z. (2015). Damage assessment of airborne laser weapon to anti-missile. In 34th Chinese Control Conference (CCC) (pp. 223–228).

    Google Scholar 

  • Ebers, J. J., & Miller, S. L. (1955). Design of alloyed junction germanium transistors for high-speed switching. The Bell System Technical Journal, 34(4), 761–781.

    Google Scholar 

  • Fabrice, L., Alfred, E., Olivier, M., Vadim, A., & Gildas, L. (2014). Behavior of composite materials subjected to 1.07 µm laser irradiation in the range of 100 W/cm2 to 2 kW/cm2. In 2014 International Conference on Laser Optics (pp. 1–1).

    Google Scholar 

  • Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., & Cho, A. Y. (1994). Quantum cascade laser. Science, 264(5158), 553–556.

    Google Scholar 

  • Friedman, L., Sun, G., & Soref, R. A. (2001). SiGe/Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands. Applied Physics Letters, 78, 401–403.

    Article  Google Scholar 

  • Gattozzi, A. L., Herbst, J. D., Hebner, R. E., Blau, J. A., Cohn, K. R., Colson, et al. (2015). Power system and energy storage models for laser integration on naval platforms. In 2015 IEEE Electric Ship Technologies Symposium (pp. 173–180).

    Google Scholar 

  • Grutzmacher, D., & Mussler, G. (2007). Si–Ge quantum well and cascade structures for optoelectronics. In 4th IEEE International Conference on Group IV Photonics (pp. 1–3).

    Google Scholar 

  • Guo, Y-L., Yan, N-N., Guo, S-H., & Zeng, G. (2013). 500 ps/1 kV pulse generator based on avalanche transistor marx circuit. In 2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST) (pp. 296–299).

    Google Scholar 

  • Henzler, S. (2010). Time-to-digital converters (Chapter 2). Berlin: Springer, ISBN 978–90-481-8627-3.

    Google Scholar 

  • Huang, Z., Fu, Q., Chen, P., Yang, H., & Yang, X. (2014). High power pulse generator based on avalanche transistor marx circuit. In 2014 IEEE International Conference on Communication Problem-Solving (pp. 315–317).

    Google Scholar 

  • Inokuchi, M., Akiyama, M., & Sakugawa, T. (2009). Development of miniature marx generator using BJT. In 2009 IEEE Pulsed Power Conference (pp. 57–60).

    Google Scholar 

  • Jiang, Y., Vijayraghavan, K., Jung, S., Jiang, A., Kim, J. H., Demmerle, F., et al. (2016). Spectroscopic Study of terahertz generation in mid-infrared quantum cascade lasers. Nature: Scientific Reports 6. Article number 21169, Published online February 16, 2016.

    Google Scholar 

  • Kelsall, R. W., & Soref, R. A. (2003). Silicon-germanium quantum-cascade lasers. International Journal of High Speed Electronics and Systems, 13(2), 547–573.

    Google Scholar 

  • Kilpelä, A. (2004). Pulsed time-of-flight laser range finder techniques for fast, high precision measurement applications. Department of Electrical and Information Engineering, University of Oulu, thesis, October 2004.

    Google Scholar 

  • Koechner, W. (2013). Solid-state laser engineering. Berlin: Springer, November 11, 2013.

    Google Scholar 

  • Kolodzey, J., Adam, T. N., Troeger, R. T., Ray, S. K., Looney, G., Rosen, A., et al. (2003). The design and operation of terahertz sources based on silicon germanium alloys. Silicon Monolithic Integrated Circuits in RF Systems, 1–5, 2003.

    Google Scholar 

  • Li, J., Zhao, B., Tang, L., & Zhao, X. (2009). Digital signal processing method and implementation for pulse laser rangefinder. In The Ninth International Conference on Electronic Measurement and Instruments (1-289-1-293).

    Google Scholar 

  • Lynch, S. A., Paul, D. J., Townsend, P., Matmon, G., Suet, Z., Kelsall, R. W., et al. (2006). Toward silicon-based lasers for terahertz sources. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1570–1578.

    Google Scholar 

  • Mehlhorn, T. A. (2014). National security research in plasma physics and pulsed power: Past, present, and future. IEEE Transactions on Plasma Science, 42(5), 1088–1117.

    Google Scholar 

  • Miller, S. L., & Ebers, J. J. (1955). Alloyed junction avalanche transistors. The Bell System Technical Journal, 34(5), 883–902.

    Google Scholar 

  • Nahin, P. J. (1977). The laser BMD and other radiant energy weapons: Some thoughts. IEEE Transactions on Aerospace and Electronic Systems, 13(2), 96–107.

    Google Scholar 

  • Oakley, M. A., Raghunathan, U. S., Wier, B. R., Chakraborty, P. S., & Cressler, J. D. (2015). Large-signal reliability analysis of sige hbt cascode driver amplifiers. IEEE Transactions on Electron Devices, 62(5), 1383–1389.

    Google Scholar 

  • Palojärvi, P., Ruotsalainen, T., & Kostamovaara, J. (2005). A 250-MHz BiCMOS receiver channel with leading edge timing discriminator for a pulsed time-of-flight laser rangefinder. IEEE Journal of Solid-State Circuits, 40(6), 1341–1349.

    Google Scholar 

  • Paul, D. J., Townsend, P., Lynch, S. A., Kelsall, R. W., Ikonic, Z., Harrison, P., et al. (2004). In search of a Si/SiGe THz quantum cascade laser. Silicon Monolithic Integrated Circuits in RF Systems, 143–146, 2004.

    Google Scholar 

  • Soetedjo, A., Ashari, M. I., Mahmudi, A., & Nakhoda, Y. I. (2014). Rasperry Pi based laser spot detection. In 2014 International Conference on Electrical Engineering and Computer Science (pp. 7–11).

    Google Scholar 

  • Soref, R. A., Friedman, L., Sun, G., Noble, M. J., & Ram-Mohan, L. R. (1999). Intersubband Quantum-well terahertz lasers and detectors. In Proceedings of SPIE (Vol. 3795, p. 515).

    Google Scholar 

  • Stickley, C. M., & Gerhardt, I. D. (1985). The laser as tactical and strategic weapon: Laser technology has revolutionized conventional warfare and promises to transform dramatically the way battles are fought. IEEE Potentials, 4(2), 22–26.

    Google Scholar 

  • Weise, T. H. G. G., Gowin, M., & Langhans, D. (2003). Solid state medium energy weapon laser. In 14th Pulsed Power Conference (Vol. 1, pp. 245–248).

    Google Scholar 

  • Wu, Q., & Tian, W. (2010). Design of electronic circuits of nanosecond impulser based on avalanche transistor. In 11th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP) (pp. 774–777).

    Google Scholar 

  • Zhang, X., Yang, X., Li, Z., & Yang, H. (2011). Subnanosecond pulsed power generator with avalanche transistor marx circuit. In 2011 International Conference on Computational Problem-Solving (pp. 347–349).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wynand Lambrechts .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lambrechts, W., Sinha, S. (2017). Electronic Countermeasures and Directed Energy Weapons: Innovative Optoelectronics Versus Brute Force. In: SiGe-based Re-engineering of Electronic Warfare Subsystems. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47403-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47403-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47402-1

  • Online ISBN: 978-3-319-47403-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics