Skip to main content

Capacitively-Coupled Chopper Operational Amplifiers

  • Chapter
  • First Online:
Capacitively-Coupled Chopper Amplifiers

Abstract

In Chap. 3, the basic capacitively-coupled chopper topology for operational amplifiers (opamp) has been described. In this chapter, two capacitively-coupled chopper opamps (CCOPA) will be presented. They both achieve wide input common-mode voltage range (CMVR) and high precision. The first opamp employs a single-path architecture and features high power efficiency and simplicity. The second opamp is more complex and employs a multipath architecture. Thus, it is less power efficient, but has a wider bandwidth and a smoother transfer function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. H. Huijsing, Operational Amplifiers: Theory and Design. Spinger, 2010.

    Google Scholar 

  2. R. Hogervorst, J.P. Tero, R.G.H. Eschauzier, J.H. Huijsing, “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VCSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1505-1513, Dec. 1994.

    Google Scholar 

  3. R. Blauschild, “Differential amplifier circuit with rail-to-rail capability,” US Patent 4, 532, 479, 30 July 1985.

    Google Scholar 

  4. W. Redman-White, “A high bandwidth constant gm and slew-rate rail-to-rail CMOS input circuit and its application to analog cells for low-voltage VLSI systems,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 701-712, May 1997.

    Google Scholar 

  5. Texas Instrument, “TPS60150 5V/140mA Charge Pump Device”, Datasheet ICL7650S, http://www.ti.com, Feb. 2011.

  6. Maximintegrated, “Simple Methods Reduce Input Ripple for All Charge Pumps,” http://www.maximintegrated.com/app-notes/index.mvp/id/2027

  7. A. Anil, R.K. Sharma, “A high efficiency charge pump for low voltage devices,” International Journal of VLSI design & Communication Systems (VLSICS), Vol.3, No.3, June 2012.

    Google Scholar 

  8. K. Kundert, “Simulating switched-capacitor filters with spectre RF,” http://www.designers-guide.org/Analysis/sc-filters.pdf.

  9. F. Witte, K. Makinwa, and J. H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers, New York: Springer, 2009.

    Google Scholar 

  10. T. Denison, K. Consoer, W. Santa, et al., “A 2 µW 100nV/√Hz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2934-2945, Dec. 2007.

    Google Scholar 

  11. R.Wu, K. A. A. Makinwa, and J. H. Huijsing, “A chopper current-feedback instrumentation amplifier with a 1mHz 1/f noise corner and an AC-coupled ripple-reduction loop,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3232-3243, Dec. 2009.

    Google Scholar 

  12. M. Snoeij, M. Ivanov, “A 36V JFET-input bipolar operational amplifier with 1μV/°C maximum offset drift and –126dB total harmonic distortion,” ISSCC, Dig. Tech. Papers, pp. 248–249, Feb. 2011.

    Google Scholar 

  13. R. Burt, J. Zhang, “Micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path,” JSSC, vol. 41, no. 12, pp. 2729-2736, Dec. 2006.

    Google Scholar 

  14. Y. Kusuda, “A 5.9nV/√Hz Chopper Operational Amplifier with 0.78μV Maximum Offset and 28.3nV/°C Offset Drift,” ISSCC, Dig. Tech. Papers, pp. 242–243, Feb. 2011.

    Google Scholar 

  15. Q. Fan, J. H. Huijsing, K. A. A. Makinwa, “A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2μV offset,” JSSC, vol. 47, no. 2, pp. 464-475, Feb. 2012.

    Google Scholar 

  16. M. Belloni, Member, E. Bonizzoni, A. Fornasari, F. Maloberti, “A Micropower Chopper—CDS Operational Amplifier,” JSSC, vol. 45, no. 12, pp. 2521-2529, Dec. 2010.

    Google Scholar 

  17. R. Eschauzier, L. Kerklaan, J. Huijsing, “A 100MHz 100-dB Operational Amplifier with Multipath Nested Miller Compensation Structure,” IEEE JSSC, pp. 1709-1717, Dec. 1992.

    Google Scholar 

  18. Q. Fan, J. H. Huijsing, K.A.A. Makinwa, “A Capacitively Coupled Chopper Instrumentation Amplifier With a ±30V Common-Mode Range 160dB CMRR and 5μV Offset,” ISSCC, Dig. Tech. Papers, pp. 242–243, Feb. 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinwen Fan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fan, Q., Makinwa, K.A.A., Huijsing, J.H. (2017). Capacitively-Coupled Chopper Operational Amplifiers. In: Capacitively-Coupled Chopper Amplifiers. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-47391-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47391-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47390-1

  • Online ISBN: 978-3-319-47391-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics