Skip to main content

Characterization via Charges

  • Chapter
  • First Online:
  • 693 Accesses

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

Abstract

Partial atomic charges provide information about the distribution of electron density within a molecule. Specifically, they reflect the amount of electron density attributed to individual atoms. Information about partial atomic charges is therefore very useful, because it provides us with a clue to the chemical behavior and reactivity of the molecule. For example, the strongly positively or negatively charged parts of the molecule tend to became reaction centers. In this chapter, we introduce several charge calculation approaches, methods for charge visualization and formats for storing charge information. Afterwards, we provide examples and exercises focused on the application of partial atomic charges. In the examples and exercises, we employ ACC (AtomicChargeCalculator), a web service for the fast and interactive calculation of atomic charges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atkins, P., De Paula, J.: Physical Chemistry for the Life Sciences, 2nd edn. Oxford University Press, Oxford (2010)

    Google Scholar 

  2. Kolár̆, M.H., Hobza, P.: Computer modeling of halogen bonds and other \(\sigma \)-hole interactions. Chem. Rev. 116(9), 5155–5187 (2016). doi:10.1021/acs.chemrev.5b00560

    Google Scholar 

  3. Rappe, A.K., Goddard, W.A.: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95(8), 3358–3363 (1991). doi:10.1021/j100161a070

    Article  CAS  Google Scholar 

  4. Vainio, M.J., Johnson, M.S.: Generating conformer ensembles using a multiobjective genetic algorithm. J. Chem. Inf. Modeling 47(6), 2462–2474 (2007). doi:10.1021/ci6005646

    Article  CAS  Google Scholar 

  5. Bissantz, C., Folkers, G., Rognan, D.: Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem. 43(25), 4759–4767 (2000). doi:10.1021/jm001044l

    Google Scholar 

  6. Svobodová Var̆eková, R., Geidl, S., Ionescu, C.M., Skřehota, O., Kudera, M., Sehnal, D., Bouchal, T., Abagyan, R., Huber, H.J., Koča, J.: Predicting p K a values of substituted phenols from atomic charges: comparison of different quantum mechanical methods and charge distribution schemes. J. Chem. Inf. Modeling 51(8), 1795–1806 (2011). doi:10.1021/ci200133w

    Google Scholar 

  7. Ionescu, C.M., Svobodová Var̆eková, R., Prehn, J.H.M., Huber, H.J., Koča, J.: Charge profile analysis reveals that activation of pro-apoptotic regulators bax and bak relies on charge transfer mediated allosteric regulation. PLoS Comput. Biol. 8(6), e1002,565 (2012). doi:10.1371/journal.pcbi.1002565

    Google Scholar 

  8. Kearsley, S.K., Sallamack, S., Fluder, E.M., Andose, J.D., Mosley, R.T., Sheridan, R.P.: Chemical similarity using physiochemical property descriptors \(\dagger \). J. Chem. Inf. Comput. Sci. 36(1), 118–127 (1996). doi:10.1021/ci950274j

    Google Scholar 

  9. Ionescu, C.M., Sehnal, D., Falginella, F.L., Pant, P., Pravda, L., Bouchal, T., Svobodová Var̆eková, R., Geidl, S., Koča, J.: AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J. Cheminformatics 7(1), 50 (2015). doi:10.1186/s13321-015-0099-x

  10. Mulliken, R.S.: Electronic population analysis on LCAO[single bond]MO molecular wave functions. I. J. Chem. Phys. 23(10), 1833 (1955). doi:10.1063/1.1740588

    Article  CAS  Google Scholar 

  11. Reed, A.E., Weinhold, F.: Natural bond orbital analysis of near-Hartree-Fock water dimer. J. Chem. Phys. 78(6), 4066–4073 (1983). doi:10.1063/1.445134

    Article  CAS  Google Scholar 

  12. Bader, R.F.W.: Atoms in molecules. Accounts Chem. Res. 18(1), 9–15 (1985). doi:10.1021/ar00109a003

    Article  CAS  Google Scholar 

  13. Singh, U.C., Kollman, P.A.: An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5(2), 129–145 (1984). doi:10.1002/jcc.540050204

    Article  CAS  Google Scholar 

  14. Gasteiger, J., Marsili, M.: A new model for calculating atomic charges in molecules. Tetrahedron Lett. 19(34), 3181–3184 (1978). doi:10.1016/S0040-4039(01)94977-9

    Article  Google Scholar 

  15. Cho, K.H., Kang, Y.K., No, K.T., Scheraga, H.A.: A fast method for calculating geometry-dependent net atomic charges for polypeptides. J. Phys. Chem. B 105(17), 3624–3634 (2001). doi:10.1021/jp0023213

    Article  CAS  Google Scholar 

  16. Oliferenko, A.A., Pisarev, S.A., Palyulin, V.A., Zefirov, N.S.: Atomic charges via electronegativity equalization: generalizations and perspectives, pp. 139–156 (2006). doi:10.1016/S0065-3276(06)51004-4

    Google Scholar 

  17. Shulga, D., Oliferenko, A., Pisarev, S., Palyulin, V., Zefirov, N.: Fast tools for calculation of atomic charges well suited for drug design1. SAR QSAR Environ. Res. 19(1–2), 153–165 (2008). doi:10.1080/10629360701844142

    Article  CAS  PubMed  Google Scholar 

  18. Mortier, W.J., Ghosh, S.K., Shankar, S.: Electronegativity-equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108(15), 4315–4320 (1986). doi:10.1021/ja00275a013

    Article  CAS  Google Scholar 

  19. Nistor, R.A., Polihronov, J.G., Müser, M.H., Mosey, N.J.: A generalization of the charge equilibration method for nonmetallic materials. J. Chem. Physics 125(9), 094,108 (2006). doi:10.1063/1.2346671

    Google Scholar 

  20. Geidl, S., Bouchal, T., Raček, T., Svobodová Var̆eková, R., Hejret, V., Kr̆enek, A., Abagyan, R., Koča, J.: High-quality and universal empirical atomic charges for chemoinformatics applications. J. Cheminformatics 7(1), 59 (2015). doi:10.1186/s13321-015-0107-1

  21. Velankar, S., van Ginkel, G., Alhroub, Y., Battle, G.M., Berrisford, J.M., Conroy, M.J., Dana, J.M., Gore, S.P., Gutmanas, A., Haslam, P., Hendrickx, P.M.S., Lagerstedt, I., Mir, S.: Fernandez Montecelo, M.A., Mukhopadhyay, A., Oldfield, T.J., Patwardhan, A., Sanz-García, E., Sen, S., Slowley, R.A., Wainwright, M.E., Deshpande, M.S., Iudin, A., Sahni, G., Salavert Torres, J., Hirshberg, M., Mak, L., Nadzirin, N., Armstrong, D.R., Clark, A.R., Smart, O.S., Korir, P.K., Kleywegt, G.J.: PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. Nucleic Acids Res. 44(D1), D385–D395 (2016). doi:10.1093/nar/gkv1047

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Koča .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Koča, J. et al. (2016). Characterization via Charges. In: Structural Bioinformatics Tools for Drug Design. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-47388-8_7

Download citation

Publish with us

Policies and ethics