Skip to main content

Detection of Channels

  • Chapter
  • First Online:
Structural Bioinformatics Tools for Drug Design

Abstract

Channels are ligand-accessible pathways inside a biomacromolecular structure. These empty voids inside a structure are composed of the surrounding residues, and as such can be viewed as a form of pattern. Importantly, they create a specific physicochemical environment, crucial in certain biological processes, such as drug metabolism, homeostasis, or cell-cell interactions. In this chapter, the topic of empty biomacromolecular voids is introduced, with the emphasis on channels. Additionally, a few biologically important phenomena driven by channels are drafted. Furthermore, an overview of tools for channel detection is provided with special emphasis on one of them - MOLE. Finally, the chapter is supplemented with exercises on channel identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, J., Woodward, C., Edelsbrunner, H.: Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 7(9), 1884–1897 (1998). doi:10.1002/pro.5560070905

    Google Scholar 

  2. Laskowski, R.A., Luscumbe, N.M., Swindels, M.B., Thornton, J.M.: Protein clefts in molecular recognition and function. Protein Sci. 5(12), 2438–2452 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Coleman, R.G., Sharp, K.A.: Finding and characterizing tunnels in macromolecules with application to ion channels and pores. Biophys. J. 96(2), 632–45 (2009). doi:10.1529/biophysj.108.135970

    Google Scholar 

  4. Pravda, L., Berka, K.: Svobodová Var̆eková, R., Sehnal, D., Banáš, P., Laskowski, R.A., Koča, J., Otyepka, M.: Anatomy of enzyme channels. BMC Bioinform. 15(1), 379 (2014). doi:10.1186/s12859-014-0379-x

  5. Hubner, C.A.: Ion channel diseases. Hum. Mol. Genet. 11(20), 2435–2445 (2002). doi:10.1093/hmg/11.20.2435

    Google Scholar 

  6. Pavlova, M., Klvana, M., Prokop, Z., Chaloupkova, R., Banas, P., Otyepka, M., Wade, R.C., Tsuda, M., Nagata, Y., Damborsky, J.: Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 5(10), 727–33 (2009). doi:10.1038/nchembio.205

    Google Scholar 

  7. Petrek, M., Otyepka, M., Banás, P., Kosinová, P., Koca, J., Damborský, J.: CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform. 7, 316 (2006). doi:10.1186/1471-2105-7-316

    Google Scholar 

  8. Raunest, M., Kandt, C.: dxTuber: detecting protein cavities, tunnels and clefts based on protein and solvent dynamics. J. Mol. Graph. Model. 29(7), 895–905 (2011). doi:10.1016/j.jmgm.2011.02.003

    Google Scholar 

  9. Ho, B.K., Gruswitz, F.: HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008). doi:10.1186/1472-6807-8-49

    Google Scholar 

  10. Laskowski, R.A.: SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13(5), 323–330 (1995). doi:10.1016/0263-7855(95)00073-9

    Google Scholar 

  11. Brady, G.P., Stouten, P.F., Brady Jr., G.P.: Fast prediction and visualization of protein binding pockets with PASS. J. Comput.-Aided Mol. Des. 14(4), 383–401 (2000). doi:10.1023/A:1008124202956

    Google Scholar 

  12. Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A., Sansom, M.S.: HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14(6), 354–360 (1996). doi:10.1016/S0263-7855(97)00009-X

    Google Scholar 

  13. Pellegrini-Calace, M., Maiwald, T., Thornton, J.M.: PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure. PLoS Comput. Biol. 5(7), e1000,440 (2009). doi:10.1371/journal.pcbi.1000440

    Google Scholar 

  14. Petr̆ek, M., Košínová, P., Koča, J., Otyepka, M.: MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure (London, England: 1993) 15(11), 1357–63 (2007). doi:10.1016/j.str.2007.10.007

    Google Scholar 

  15. Sehnal, D. Svobodová Var̆eková, R., Berka, K., Pravda, L., Navrátilová, V., Banáš, P., Ionescu, C.M., Otyepka, M., Koča, J.: MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminform. 5(1), 39 (2013). doi:10.1186/1758-2946-5-39

    Google Scholar 

  16. Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora, A., Sustr, V., Klvana, M., Medek, P., Biedermannova, L., Sochor, J., Damborsky, J.: CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8(10), e1002,708 (2012). doi:10.1371/journal.pcbi.1002708

    Google Scholar 

  17. Yaffe, E., Fishelovitch, D., Wolfson, H.J., Halperin, D., Nussinov, R.: MolAxis: a server for identification of channels in macromolecules. Nucl. Acids Res. 36(Web Server issue), W210–5 (2008). doi:10.1093/nar/gkn223

    Google Scholar 

  18. Kim, J.K., Cho, Y.: Laskowski, R.a., Ryu, S.E., Sugihara, K., Kim, D.S.: BetaVoid: molecular voids via beta-complexes and Voronoi diagrams. Proteins 82(9), 1829–49 (2014). doi:10.1002/prot.24537

    Google Scholar 

  19. Masood, T.B., Sandhya, S., Chandra, N., Natarajan, V.: CHEXVIS: a tool for molecular channel extraction and visualization. BMC Bioinform. 16(1), 1–19 (2015). doi:10.1186/s12859-015-0545-9

  20. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959). doi:10.1007/BF01386390

    Google Scholar 

  21. Berka, K., Hanák, O., Sehnal, D., Banáš, P., Navrátilová, V., Jaiswal, D., Ionescu, C.M., Svobodová Vareková, R., Koča, J., Otyepka, M., Banás, P., Svobodová Vareková, R., Koca, J.: MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucl. Acids Res. 40(Web Server issue), W222–7 (2012). doi:10.1093/nar/gks363

    Google Scholar 

  22. Niyomrattanakit, P., Chen, Y.L., Dong, H., Yin, Z., Qing, M., Glickman, J.F., Lin, K., Mueller, D., Voshol, H., Lim, J.Y.H., Nilar, S., Keller, T.H., Shi, P.Y.: Inhibition of dengue virus polymerase by blocking of the RNA tunnel. J. Virol. 84(11), 5678–5686 (2010). doi:10.1128/JVI.02451-09

    Google Scholar 

  23. Gerlach, P., Malet, H., Cusack, S., Reguera, J.: Structural insights into bunyavirus replication and its regulation by the vRNA promoter. Cell 161(6), 1267–1279 (2015). doi:10.1016/j.cell.2015.05.006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Koča .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Koča, J. et al. (2016). Detection of Channels. In: Structural Bioinformatics Tools for Drug Design. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-47388-8_6

Download citation

Publish with us

Policies and ethics