Skip to main content

Biomacromolecular Fragments and Patterns

  • Chapter
  • First Online:
Structural Bioinformatics Tools for Drug Design

Abstract

Structural bioinformatics is flourishing from the increased public availability of high-resolution biomacromolecular structures. Careful analysis of these models enables us to study their important structural features, such as catalytic sites, which catalyze the majority of chemical reactions in living organisms; binding sites controlling vital cell processes, and many more. As a consequence, gathering all this information together enables us to understand key biological and biochemical processes in an unprecedented level of detail. Indeed, this knowledge can be in turn adopted, not only for studying the molecular basis of uncharacterized diseases, or designing novel inhibitors, but it can also find applications in biotechnology, agriculture etc. This chapter provides an introduction to the biologically important parts of proteins which are referred to as biomacromolecular patterns or fragments, and overviews selected software tools for their identification in publicly available databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Off-target protein binding implies an undesirable binding of a small molecule with a therapeutic effect to a protein target other than the primary target for which it was intended. Such binding often causes unintended side effects.

  2. 2.

    RMSD is a metric describing the structural difference between two molecules (patterns) in Ångströms, i.e. how well would two or more structures fit on top of each other. The higher the RMSD is, the more divergent the structures are. Two molecules with identical conformation (same atomic positions) have an RMSD equal to 0.

References

  1. Daëron, M., Jaeger, S., Du Pasquier, L., Vivier, E.: Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol. Rev. 224(1), 11–43 (2008). doi:10.1111/j.1600-065X.2008.00666.x

    Google Scholar 

  2. Laskowski, R.A., Gerick, F., Thornton, J.M.: The structural basis of allosteric regulation in proteins. FEBS Lett. 583(11), 1692–1698 (2009). doi:10.1016/j.febslet.2009.03.019

    Google Scholar 

  3. Motlagh, H.N., Wrabl, J.O., Li, J., Hilser, V.J.: The ensemble nature of allostery. Nature 508(7496), 331–339 (2014). doi:10.1038/nature13001

    Google Scholar 

  4. Nussinov, R., Tsai, C.J.: Allostery in disease and in drug discovery. Cell 153(2), 293–305 (2013). doi:10.1016/j.cell.2013.03.034

    Google Scholar 

  5. Liang, J., Woodward, C., Edelsbrunner, H.: Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 7(9), 1884–1897 (1998). doi:10.1002/pro.5560070905

    Google Scholar 

  6. Nayal, M., Honig, B.: On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins: Struct. Funct. Bioinf. 63(4), 892–906 (2006). doi:10.1002/prot.20897

    Google Scholar 

  7. Skolnick, J., Gao, M., Roy, A., Srinivasan, B., Zhou, H.: Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function. Bioorg. Med. Chem. Lett. 25(6), 1163–1170 (2015). doi:10.1016/j.bmcl.2015.01.059

    Google Scholar 

  8. Hubner, C.A.: Ion channel diseases. Hum. Mol. Genet. 11(20), 2435–2445 (2002). doi:10.1093/hmg/11.20.2435

    Google Scholar 

  9. Zhou, H.X., McCammon, J.A.: The gates of ion channels and enzymes. Trends in Biochem. Sci. 35(3), 179–185 (2010). doi:10.1016/j.tibs.2009.10.007

    Google Scholar 

  10. Smith, W.L., DeWitt, D.L., Garavito, R.M.: Cyclooxygenases: structural, cellular, and molecular biology. Ann. Rev. Biochem. 69(1), 145–182 (2000). doi:10.1146/annurev.biochem.69.1.145

    Google Scholar 

  11. Hornak, V., Simmerling, C.: Targeting structural flexibility in HIV-1 protease inhibitor binding. Drug Discov. Today 12(3–4), 132–138 (2007). doi:10.1016/j.drudis.2006.12.011

    Google Scholar 

  12. Kunze, J., Todoroff, N., Schneider, P., Rodrigues, T., Geppert, T., Reisen, F., Schreuder, H., Saas, J., Hessler, G., Baringhaus, K.H., Schneider, G.: Targeting dynamic pockets of HIV-1 protease by structure-based computational screening for allosteric inhibitors. J. Chem. Inf. Mod. 54(3), 987–991 (2014). doi:10.1021/ci400712h

    Google Scholar 

  13. Pabo, C.O., Peisach, E., Grant, R.A.: Design and selection of Novel Cys 2 His 2 zinc finger proteins. Ann. Rev. Biochem. 70(1), 313–340 (2001). doi:10.1146/annurev.biochem.70.1.313

    Google Scholar 

  14. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucl. Acids Res. 34(Web Server), W116–W118 (2006). doi:10.1093/nar/gkl282

    Google Scholar 

  15. Yu, J., Zhou, Y., Tanaka, I., Yao, M.: Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 26(1), 46–52 (2010). doi:10.1093/bioinformatics/btp599

    Google Scholar 

  16. Laurie, A.T.R., Jackson, R.M.: Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9), 1908–1916 (2005). doi:10.1093/bioinformatics/bti315

    Google Scholar 

  17. Ngan, C.H., Hall, D.R., Zerbe, B., Grove, L.E., Kozakov, D., Vajda, S.: FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics (Oxford, England) 28(2), 286–7 (2012). doi:10.1093/bioinformatics/btr651

    Google Scholar 

  18. Sehnal, D., Svobodová Vařeková, R., Berka, K., Pravda, L., Navrátilová, V., Banáš, P., Ionescu, C.M., Otyepka, M., Koča, J.: MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminf. 5(1), 39 (2013). doi:10.1186/1758-2946-5-39

    Google Scholar 

  19. Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora, A., Sustr, V., Klvana, M., Medek, P., Biedermannova, L., Sochor, J., Damborsky, J.: CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8(10), e1002,708 (2012). doi:10.1371/journal.pcbi.1002708

    Google Scholar 

  20. Yaffe, E., Fishelovitch, D., Wolfson, H.J., Halperin, D., Nussinov, R.: MolAxis: a server for identification of channels in macromolecules. Nucl. Acids Res. 36(Web Server issue), W210–5 (2008). doi:10.1093/nar/gkn223

    Google Scholar 

  21. Huang, B.: MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS: J. Integr. Biol. 13(4), 325–330 (2009). doi:10.1089/omi.2009.0045

    Google Scholar 

  22. Ehrt, C., Brinkjost, T., Koch, O.: Impact of binding site comparisons on medicinal chemistry and rational molecular design. J. Med. Chem. 59(9), 4121–4151 (2016). doi:10.1021/acs.jmedchem.6b00078

    Google Scholar 

  23. Debret, G., Martel, A., Cuniasse, P.: RASMOT-3D PRO: a 3D motif search webserver. Nucl. Acids Res. 37(SUPPL. 2), 459–464 (2009). doi:10.1093/nar/gkp304

    Article  Google Scholar 

  24. Velankar, S., van Ginkel, G., Alhroub, Y., Battle, G.M., Berrisford, J.M., Conroy, M.J., Dana, J.M., Gore, S.P., Gutmanas, A., Haslam, P., Hendrickx, P.M.S., Lagerstedt, I., Mir, S., Fernandez Montecelo, M.A., Mukhopadhyay, A., Oldfield, T.J., Patwardhan, A., Sanz-García, E., Sen, S., Slowley, R.A., Wainwright, M.E., Deshpande, M.S., Iudin, A., Sahni, G., Salavert Torres, J., Hirshberg, M., Mak, L., Nadzirin, N., Armstrong, D.R., Clark, A.R., Smart, O.S., Korir, P.K., Kleywegt, G.J.: PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. Nucl. Acids Res. 44(D1), D385–D395 (2016). doi:10.1093/nar/gkv1047

    Google Scholar 

  25. Golovin, A., Henrick, K.: MSDmotif: exploring protein sites and motifs. BMC Bioinf. 9, 312 (2008). doi:10.1186/1471-2105-9-312

  26. Sehnal, D., Pravda, L., Svobodová Vařeková, R., Ionescu, C.M., Koča, J.: PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire protein data bank. Nucl. Acids Res. 43(W1), W383–W388 (2015). doi:10.1093/nar/gkv561

    Google Scholar 

  27. Nadzirin, N., Willett, P., Artymiuk, P.J., Firdaus-Raih, M.: IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the protein data bank. Nucl. Acids Res. 41(Web Server issue) (2013). doi:10.1093/nar/gkt431

    Google Scholar 

  28. Nadzirin, N., Gardiner, E.J., Willett, P., Artymiuk, P.J., Firdaus-Raih, M.: SPRITE and ASSAM: web servers for side chain 3D-motif searching in protein structures. Nucl. Acids Res. 40(Web Server issue), W380–6 (2012). doi:10.1093/nar/gks401

    Google Scholar 

  29. Smith, K.P., Gifford, K.M., Waitzman, J.S., Rice, S.E.: Survey of phosphorylation near drug binding sites in the protein data bank (PDB) and their effects. Proteins: Struct. Funct. Bioinf. 83(1), 25–36 (2014). doi:10.1002/prot.24605

    Google Scholar 

  30. Morgan, D.O.: CYCLIN-DEPENDENT KINASES: engines, clocks, and microprocessors. Ann. Rev. Cell Dev. Biol. 13(1), 261–291 (1997). doi:10.1146/annurev.cellbio.13.1.261

    Google Scholar 

  31. Gu, Y., Rosenblatt, J., Morgan, D.O.: Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J. 11(11), 3995–4005 (1992). http://www.ncbi.nlm.nih.gov/pubmed/1396589. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC556910

    Google Scholar 

  32. Bartova, I.: The mechanism of inhibition of the cyclin-dependent kinase-2 as revealed by the molecular dynamics study on the complex CDK2 with the peptide substrate HHASPRK. Protein Sci. 14(2), 445–451 (2005). doi:10.1110/ps.04959705

    Google Scholar 

  33. Otyepka, M., Bártová, I., Kříž, Z., Koča, J.: Different mechanisms of CDK5 and CDK2 activation as revealed by CDK5/p25 and CDK2/Cyclin a dynamics. J. Biol. Chem. 281(11), 7271–7281 (2006). doi:10.1074/jbc.M509699200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Koča .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Koča, J. et al. (2016). Biomacromolecular Fragments and Patterns. In: Structural Bioinformatics Tools for Drug Design. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-47388-8_2

Download citation

Publish with us

Policies and ethics