Skip to main content

Use of Commercial Enzymes to Boost On-Site Enzyme Efficiency

  • Chapter
  • First Online:
Renewable Biofuels

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 636 Accesses

Abstract

In-house production of cellulases from filamentous fungi is widely used, but their hydrolytic efficiency compared to commercial enzymes is limited. We studied the effect of supplementing in-house cellulases produced by Trichoderma reesei RUT-C30 and a novel strain Aspergillus saccharolyticus with different types of commercial enzymes for the efficient hydrolysis of wet-exploded loblolly pine. Cellic®Ctec 2, Cellic®Htec2, and Novozym 188 were used as the commercial base enzymes for supplementing the in-house produced enzymes. Compared to non-supplemented in-house enzyme preparation, commercial enzymes (Cellic®Ctec2) added in the same amount as FPU and CBU resulted in 68 % higher glucose yield using wet-exploded loblolly pine (WELP) at a 20 % DM concentration. Highest saccharification yield was achieved by supplementation of the in-house produced cellulases with Cellic®Htec2 compared to Cellic®Ctec2 and Novozym 188. Optimal glucose, xylose, and mannose yields, 85 %, 92 %, and 86 %, respectively, were achieved by using in-house enzymes (15 FPU/g cellulose) supplemented with commercial hemicellulase (7.5 FPU/g cellulose). These results showed that supplementing in-house enzymes with commercial enzymes can be advantageous and work for lowering the overall cost of enzymes in a biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvira, P., Negro, M. J., & Ballesteros, M. (2011). Effect of endoxylanase and α-l-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresource Technology, 102(6), 4552–4558. doi:10.1016/j.biortech.2010.12.112.

    Article  Google Scholar 

  • Banerjee, G., Scott-Craig, J., & Walton, J. (2010). Improving enzymes for biomass conversion: A basic research perspective. BioEnergy Research, 3(1), 82–92. doi:10.1007/s12155-009-9067-5.

    Article  Google Scholar 

  • Boussaid, A.-L., Esteghlalian, A., Gregg, D., Lee, K., & Saddler, J. (2000). Steam pretreatment of douglas-fir wood chips. Applied Biochemistry and Biotechnology, 84–86(1–9), 693–705. doi:10.1385/abab:84-86:1-9:693.

    Article  Google Scholar 

  • Boussaid, A., Robinson, J., Cai, Y.-J., Gregg, D. J., & Saddler, J. N. (1999). Fermentability of the hemicellulose-derived sugars from steam-exploded softwood (douglas fir). Biotechnology and Bioengineering, 64(3), 284–289. doi:10.1002/(sici)1097-0290(19990805)64:3<284::aid-bit4>3.0.co;2-c.

    Article  Google Scholar 

  • Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnology Progress, 20(1), 200–206. doi:10.1021/bp0257978.

    Article  Google Scholar 

  • Cullis, I. F., Saddler, J. N., & Mansfield, S. D. (2004). Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnology and Bioengineering, 85(4), 413–421. doi:10.1002/bit.10905.

    Article  Google Scholar 

  • Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences, 5(6), 578–595.

    Article  Google Scholar 

  • García-Aparicio, M., Ballesteros, M., Manzanares, P., Ballesteros, I., González, A., & Negro, M. J. (2007). Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. In J. Mielenz, K. T. Klasson, W. Adney, & J. McMillan (Eds.), Applied biochemistry and biotecnology (pp. 353–365). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Gregg, D. J., & Saddler, J. N. (1996). Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 51(4), 375–383. doi:10.1002/(sici)1097-0290(19960820)51:4<375::aid-bit1>3.0.co;2-f.

    Article  Google Scholar 

  • Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–953. doi:10.1007/s00253-006-0827-2.

    Article  Google Scholar 

  • Hespell, R., O’Bryan, P., Moniruzzaman, M., & Bothast, R. (1997). Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans. Applied Biochemistry and Biotechnology, 62(1), 87–97. doi:10.1007/bf02787986.

    Article  Google Scholar 

  • Kim, S., & Holtzapple, M. T. (2006). Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology, 97(4), 583–591. doi:10.1016/j.biortech.2005.03.040.

    Article  Google Scholar 

  • Kumar, L., Chandra, R., Chung, P. A., & Saddler, J. (2010). Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Bioresource Technology, 101(20), 7827–7833. doi:10.1016/j.biortech.2010.05.023.

    Article  Google Scholar 

  • Kumar, R., Singh, S., & Singh, O. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377–391. doi:10.1007/s10295-008-0327-8.

    Article  Google Scholar 

  • Kumar, R., & Wyman, C. E. (2009). Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresource Technology, 100(18), 4203–4213. doi:10.1016/j.biortech.2008.11.057.

    Article  Google Scholar 

  • Larsson, M., Galbe, M., & Zacchi, G. (1997). Recirculation of process water in the production of ethanol from softwood. Bioresource Technology, 60(2), 143–151. doi:10.1016/s0960-8524(97)00011-4.

    Article  Google Scholar 

  • Ljungdahl, L. G. (2008). The cellulase/hemicellulase system of the anaerobic fungus Orpinomycespc-2 and aspects of its applied use. Annals of the New York Academy of Sciences, 1125(1), 308–321. doi:10.1196/annals.1419.030.

    Article  Google Scholar 

  • Mackie, K. L., Brownell, H. H., West, K. L., & Saddler, J. N. (1985). Effect of sulphur dioxide and sulphuric acid on steam explosion of aspenwood. Journal of Wood Chemistry and Technology, 5(3), 405–425. doi:10.1080/02773818508085202.

    Article  Google Scholar 

  • Merino, S., & Cherry, J. (2007a). Progress and challenges in enzyme development for biomass utilization. In L. Olsson (Ed.), Biofuels (Vol. 108, pp. 95–120). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Merino, S., & Cherry, J. (2007b). Progress and challenges in enzyme development for biomass utilization. Advances in Biochemical Engineering and Biotechnology, 108, 95–120.

    Google Scholar 

  • Monavari, S., Galbe, M., & Zacchi, G. (2009). Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresource Technology, 100(24), 6312–6316. doi:10.1016/j.biortech.2009.06.097.

    Article  Google Scholar 

  • Nguyen, Q. A., & Saddler, J. N. (1991). An integrated model for the technical and economic evaluation of an enzymatic biomass conversion process. Bioresource Technology, 35(3), 275–282. doi:10.1016/0960-8524(91)90125-4.

    Article  Google Scholar 

  • Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25–33. doi:10.1016/S0960-8524(99)00161-3.

    Article  Google Scholar 

  • Persson, I., Tjerneld, F., & Hahn-Hägerdal, B. (1991). Fungal cellulolytic enzyme production: A review. Process Biochemistry, 26(2), 65–74. doi:10.1016/0032-9592(91)80019-L.

    Article  Google Scholar 

  • Qing, Q., & Wyman, C. (2011). Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnology for Biofuels, 4(1), 18.

    Article  Google Scholar 

  • Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24), 9624–9630. doi:10.1016/j.biortech.2010.06.137.

    Article  Google Scholar 

  • Ramos, L. P., Breuil, C., & Saddler, J. N. (1992). Comparison of steam pretreatment of eucalyptus, aspen, and spruce wood chips and their enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 34–35(1), 37–48. doi:10.1007/bf02920532.

    Article  Google Scholar 

  • Rana, D., Rana, V., & Ahring, B. K. (2012). Producing high sugar concentrations from loblolly pine using wet explosion pretreatment. Bioresource Technology, 121, 61–67. doi:10.1016/j.biortech.2012.06.062.

    Article  Google Scholar 

  • Raweesri, P., Riangrungrojana, P., & Pinphanichakarn, P. (2008). α-l-Arabinofuranosidase from Streptomyces sp. PC22: Purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresource Technology, 99(18), 8981–8986. doi:10.1016/j.biortech.2008.05.016.

    Article  Google Scholar 

  • Ruiz, R., & Ehrman, T. (1996). Dilute acid hydrolysis procedure for determination of total sugars in the liquid fraction of process samples. Golden, CO: Laboratory Analytical Procedure.

    Google Scholar 

  • Saddler, J. N., & Gregg, D. J. (1998). Ethanol production from forest product wastes. In A. Bruce & J. W. Palfreyman (Eds.), Forest products biotechnology (pp. 183–207). London: Taylor & Francis Ltd.

    Google Scholar 

  • Schell, D., Nguyen, Q., Tucker, M., & Boynton, B. (1998). Pretreatment of softwood by acid-catalyzed steam explosion followed by alkali extraction. Applied Biochemistry and Biotechnology, 70–72(1), 17–24. doi:10.1007/bf02920120.

    Article  Google Scholar 

  • Schwald, W., Breuil, C., Brownell, H. H., Chan, M., & Saddler, J. M. (1989). Assessment of pretreatment conditions to obtain fast complete hydrolysis on high substrate concentrations. Applied Biochemistry and Biotechnology, 20–21(1), 29–44. doi:10.1007/bf02936471.

    Article  Google Scholar 

  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., & Sluiter, J. (2004). Determination of structural carbohydrates and lignin in biomass. Golden, CO: Laboratory Analytical Procedure.

    Google Scholar 

  • Stockton, B. C., Mitchell, D. J., Grohmann, K., & Himmel, M. E. (1991). Optimum beta-D-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnology Letters, 13(1), 57–62. doi:10.1007/bf01033518.

    Article  Google Scholar 

  • Tabka, M. G., Herpoël-Gimbert, I., Monod, F., Asther, M., & Sigoillot, J. C. (2006). Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 39(4), 897–902. doi:10.1016/j.enzmictec.2006.01.021.

    Article  Google Scholar 

  • Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., et al. (1998). Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Applied Biochemistry and Biotechnology, 70–72(1), 3–15. doi:10.1007/bf02920119.

    Article  Google Scholar 

  • Tomás-Pejó, E., Oliva, J. M., Ballesteros, M., & Olsson, L. (2008). Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnology and Bioengineering, 100(6), 1122–1131. doi:10.1002/bit.21849.

    Article  Google Scholar 

  • Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnology Progress, 23(5), 1130–1137. doi:10.1021/bp070129d.

    Google Scholar 

  • Várnai, A., Huikko, L., Pere, J., Siika-aho, M., & Viikari, L. (2011). Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresource Technology, 102(19), 9096–9104. doi:10.1016/j.biortech.2011.06.059.

    Article  Google Scholar 

  • von Sivers, M., & Zacchi, G. (1995). A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technology, 51(1), 43–52. doi:10.1016/0960-8524(94)00094-H.

    Article  Google Scholar 

  • Wingreini, A., Galbe, M., Roslander, C., Rudolf, A., & Zacchi, G. (2005). Effect of reduction in yeast and enzyme concentrations in a simultaneous- saccharification-and-fermentationbased bioethanol process. In B. H. Davison, B. R. Evans, M. Finkelstein, & J. D. McMillan (Eds.), Twenty-sixth symposium on biotechnology for fuels and chemicals (pp. 485–499). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Wu, M., Chang, K., Gregg, D., Boussaid, A., Beatson, R., & Saddler, J. (1999). Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Applied Biochemistry and Biotechnology, 77(1–3), 47–54. doi:10.1385/abab:77:1-3:47.

    Article  Google Scholar 

  • Wyman, C. E. (2007). What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology, 25(4), 153–157. doi:10.1016/j.tibtech.2007.02.009.

    Article  Google Scholar 

  • Yang, B., Boussaid, A., Mansfield, S. D., Gregg, D. J., & Saddler, J. N. (2002). Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnology and Bioengineering, 77(6), 678–684. doi:10.1002/bit.10159.

    Article  Google Scholar 

  • Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2(1), 26–40. doi:10.1002/bbb.49.

    Article  Google Scholar 

  • Yu, P., McKinnon, J. J., Maenz, D. D., Olkowski, A. A., Racz, V. J., & Christensen, D. A. (2002). Enzymic release of reducing sugars from oat hulls by cellulase, as influenced by Aspergillus ferulic acid esterase and Trichoderma xylanase. Journal of Agricultural and Food Chemistry, 51(1), 218–223. doi:10.1021/jf020476x.

    Article  Google Scholar 

  • Zacchi, G., & Axelsson, A. (1989). Economic evaluation of preconcentration in production of ethanol from dilute sugar solutions. Biotechnology and Bioengineering, 34(2), 223–233. doi:10.1002/bit.260340211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Rana, V., Rana, D. (2017). Use of Commercial Enzymes to Boost On-Site Enzyme Efficiency. In: Renewable Biofuels. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47379-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47379-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47378-9

  • Online ISBN: 978-3-319-47379-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics