Skip to main content

Enzyme Production from Trichoderma reesei and Aspergillus Strain

  • Chapter
  • First Online:
Renewable Biofuels

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 646 Accesses

Abstract

Cellulase production by two filamentous fungi Trichoderma reesei RUT-C30 and novel fungal strain, Aspergillus saccharolyticus, on pretreated corn stover was investigated. Cellulase production was followed by the hydrolysis of wet-exploded corn stover (WECS) and wet-exploded loblolly pine (WELP) by on-site produced enzyme cocktail containing cellulase from T. reesei RUT-C30 and β-glucosidase from A. saccharolyticus. The sugar yields by using the on-site enzyme cocktail were compared with the commercial enzyme preparations, Celluclast 1.5 L and Novozym 188 at two substrate concentrations, 5 and 10 % (w/w), and enzyme loading at 5 and 15 FPU/g glucan for WECS and WELP. Highest sugar yields were obtained at 5 % (w/w) substrate concentration and 15 FPU/g glucan for both feedstocks, WECS and WELP. Glucose yields of 81 and 88 % were obtained from on-site and commercial enzymes, respectively, from WECS, and 55 and 58 % were achieved from on-site and commercial enzymes, respectively, from WELP.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-47379-6_6

Reprinted from Bioresource Technology, Vol. 154, Rana V, Eckard AD, Teller P, Ahring BK, On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine, PP. 282–289, Copyright 2014, with permission from Elsevier.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-47379-6_6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aden, A., & Foust, T. (2009). Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose, 16(4), 535–545. doi:10.1007/s10570-009-9327-8.

    Article  Google Scholar 

  • Alvira, P., Gyalai-Korpos, M., Barta, Z., Oliva, J. M., Réczey, K., & Ballesteros, M. (2013). Production and hydrolytic efficiency of enzymes from Trichoderma reeseiRUTC30 using steam pretreated wheat straw as carbon source. Journal of Chemical Technology & Biotechnology, 88(6), 1150–1156. doi:10.1002/jctb.3955.

    Article  Google Scholar 

  • Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270. doi:10.1016/0168-1656(92)90074-J.

    Article  Google Scholar 

  • Bailey, M. J., & Tähtiharju, J. (2003). Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Applied Microbiology and Biotechnology, 62(2–3), 156–162. doi:10.1007/s00253-003-1276-9.

    Article  Google Scholar 

  • Bendig, C., & Weuster-Botz, D. (2012). Reaction engineering analysis of cellulase production with Trichoderma reesei RUT-C30 with intermittent substrate supply. Bioprocess and Biosystems Engineering, 1–8. doi:10.1007/s00449-012-0822-1.

  • Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 125(2), 198–209. doi:10.1016/j.jbiotec.2006.02.021.

    Article  Google Scholar 

  • Bey, M., Berrin, J.-G., Poidevin, L., & Sigoillot, J.-C. (2011). Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes. Microbial Cell Factories, 10(1), 113.

    Article  Google Scholar 

  • Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnology Progress, 20(1), 200–206. doi:10.1021/bp0257978.

    Article  Google Scholar 

  • Dutta, A., Dowe, N., Ibsen, K. N., Schell, D. J., & Aden, A. (2010). An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnology Progress, 26(1), 64–72. doi:10.1002/btpr.311.

    Google Scholar 

  • Flachner, B., Brumbauer, A., & Reczey, K. (1999). Stabilization of beta-glucosidase in Aspergillus phoenicis QM 329 pellets - Evalutionary implications. Enzyme and Microbial Technology, 24(5), 362–367. doi:10.1016/s0141-0229(98)00133-1.

    Article  Google Scholar 

  • Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry, 278(34), 31988–31997. doi:10.1074/jbc.M304750200.

    Article  Google Scholar 

  • García-Aparicio, M., Ballesteros, I., González, A., Oliva, J., Ballesteros, M., & Negro, M. (2006). Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 129(1–3), 278–288. doi:10.1385/abab:129:1:278.

    Article  Google Scholar 

  • Ghose, T. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.

    Article  Google Scholar 

  • Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: A review. Bioresource Technology, 89(1), 17–34. doi:10.1016/S0960-8524(03)00033-6.

    Article  Google Scholar 

  • Hari Krishna, S., Sekhar Rao, K. C., Suresh Babu, J., & Srirami Reddy, D. (2000). Studies on the production and application of cellulase from Trichoderma reesei QM-9414. Bioprocess Engineering, 22(5), 467–470. doi:10.1007/s004490050760.

    Article  Google Scholar 

  • Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., & Viikari, L. (2005). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry, 40(11), 3519–3525. doi:10.1016/j.procbio.2005.03.057.

    Article  Google Scholar 

  • Kazi, F. K., Fortman, J. A., Anex, R. P., Hsu, D. D., Aden, A., Dutta, A., et al. (2010). Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89(Suppl 1), S20–S28. doi:10.1016/j.fuel.2010.01.001.

    Article  Google Scholar 

  • Kovács, K., Szakacs, G., & Zacchi, G. (2009). Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresource Technology, 100(3), 1350–1357. doi:10.1016/j.biortech.2008.08.006.

    Article  Google Scholar 

  • Kumar, R., & Wyman, C. E. (2009). Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnology and Bioengineering, 102(2), 457–467. doi:10.1002/bit.22068.

    Article  Google Scholar 

  • Kurabi, A., Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Robinson, J., et al. (2005). Enzymatic hydrolysis of steam-exploded and ethanol organosolv-pretreated Douglas-Fir by novel and commercial fungal cellulases. In B. Davison, B. Evans, M. Finkelstein, & J. McMillan (Eds.), Twenty-sixth symposium on biotechnology for fuels and chemicals (pp. 219–230). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Lee, S. H., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2009). Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering, 102(5), 1368–1376. doi:10.1002/bit.22179.

    Article  Google Scholar 

  • Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5), 553–560. doi:10.1038/nbt1403.

    Article  Google Scholar 

  • Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 33(5), 612–619. doi:10.1016/S0141-0229(03)00181-9.

    Article  Google Scholar 

  • Rahikainen, J. L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., et al. (2013). Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology, 133, 270–278. doi:10.1016/j.biortech.2013.01.075.

    Article  Google Scholar 

  • Rana, D., Rana, V., & Ahring, B. K. (2012). Producing high sugar concentrations from loblolly pine using wet explosion pretreatment. Bioresource Technology, 121, 61–67. doi:10.1016/j.biortech.2012.06.062.

    Article  Google Scholar 

  • Ryu, D. D. Y., & Mandels, M. (1980). Cellulases: Biosynthesis and applications. Enzyme and Microbial Technology, 2(2), 91–102. doi:10.1016/0141-0229(80)90063-0.

    Article  Google Scholar 

  • Sipos, B., Benkő, Z., Dienes, D., Réczey, K., Viikari, L., & Siika-aho, M. (2010). Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Applied Biochemistry and Biotechnology, 161(1–8), 347–364. doi:10.1007/s12010-009-8824-4.

    Article  Google Scholar 

  • Sørensen, A., Teller, P., Lübeck, P., & Ahring, B. (2011). Onsite enzyme production during bioethanol production from biomass: Screening for suitable fungal strains. Applied Biochemistry and Biotechnology, 164(7), 1058–1070. doi:10.1007/s12010-011-9194-2.

    Article  Google Scholar 

  • Stockton, B. C., Mitchell, D. J., Grohmann, K., & Himmel, M. E. (1991). Optimumβ-D-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnology Letters, 13(1), 57–62. doi:10.1007/bf01033518.

    Article  Google Scholar 

  • Tabka, M. G., Herpoël-Gimbert, I., Monod, F., Asther, M., & Sigoillot, J. C. (2006). Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 39(4), 897–902. doi:10.1016/j.enzmictec.2006.01.021.

    Article  Google Scholar 

  • Um, B.-H., & Walsum, G. P. (2012). Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose. Applied Biochemistry and Biotechnology, 168(2), 406–420. doi:10.1007/s12010-012-9784-7.

    Article  Google Scholar 

  • Wu, G., He, R., Jia, W., Chao, Y., & Chen, S. (2011). Strain improvement and process optimization of Trichderma reesei Rut C30 for enhanced cellulase production. Biofuels, 2(5), 545–555. doi:10.4155/bfs.11.124.

    Article  Google Scholar 

  • Zaldívar, M., Velásquez, J. C., Contreras, I., & Pérez, L. M. (2001). Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: Its potential use in waste cellulose degradation and/or biocontrol. Electronic Journal of Biotechnology, 4(3), 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Rana, V. (2017). Enzyme Production from Trichoderma reesei and Aspergillus Strain. In: Renewable Biofuels. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47379-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47379-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47378-9

  • Online ISBN: 978-3-319-47379-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics