Skip to main content

Role of Microorganisms in Lignocellulosic Biodegradation

  • Chapter
  • First Online:
Renewable Biofuels

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Increasing the economic feasibility of biorefineries could strengthen the case for industrial production of biofuels which again could lower the environmental impact of current fossil fuel usage. Lignocellulose-degrading enzymes are derived from certain fungi and bacteria, which are not only difficult to culture at industrial scale but also exhibit low specific activity and low titer concentration. Accordingly, new technologies to improve the performance of lignocellulolytic enzymes have been investigated heavily during the last years. In this paper we will discuss the mechanism of lignocellulose degradation and the action of lignocellulolytic enzymes. We will further examine the latest developments for improving the production of lignocellulose-degrading enzymes from microbial production strains. Finally, we will discuss future strategies for cellulase production and evaluate their benefits and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aa, K., Flengsrud, R., Lindahl, V., & Tronsmo, A. (1994). Characterization of production and enzyme properties of an endo-β-1,4-glucanase from Bacillus subtilis CK-2 isolated from compost soil. Antonie van Leeuwenhoek, 66(4), 319–326. doi:10.1007/bf00882767.

    Article  Google Scholar 

  • Abbas, A., & Ansumali, S. (2010). Global potential of rice husk as a renewable feedstock for ethanol biofuel production. BioEnergy Research, 3(4), 328–334. doi:10.1007/s12155-010-9088-0.

    Article  Google Scholar 

  • Aden, A., & Foust, T. (2009). Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose, 16(4), 535–545. doi:10.1007/s10570-009-9327-8.

    Article  Google Scholar 

  • Adler, E. (1977). Lignin chemistry—Past, present and future. Wood Science and Technology, 11(3), 169–218. doi:10.1007/bf00365615.

    Article  Google Scholar 

  • Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. doi:10.1016/j.biotechadv.2011.05.005.

    Article  Google Scholar 

  • Ahamed, A., & Vermette, P. (2008). Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochemical Engineering Journal, 42(1), 41–46. doi:10.1016/j.bej.2008.05.007.

    Article  Google Scholar 

  • Aiello, C., Ferrer, A., & Ledesma, A. (1996). Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresource Technology, 57(1), 13–18. doi:10.1016/0960-8524(96)00012-0.

    Article  Google Scholar 

  • Allerdings, E., Ralph, J., Steinhart, H., & Bunzel, M. (2006). Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran. Phytochemistry, 67(12), 1276–1286. doi:10.1016/j.phytochem.2006.04.018.

    Article  Google Scholar 

  • Allgaier, S., Taylor, R. D., Brudnaya, Y., Jacobson, D. J., Cambareri, E., & Stuart, W. D. (2009). Vaccine production in Neurospora crassa. Biologicals, 37(3), 128–132. doi:10.1016/j.biologicals.2009.02.006.

    Article  Google Scholar 

  • Allgaier, S., Weiland, N., Hamad, I., & Kempken, F. (2010). Expression of ribonuclease A and ribonuclease N1 in the filamentous fungus Neurospora crassa. Applied Microbiology and Biotechnology, 85(4), 1041–1049. doi:10.1007/s00253-009-2161-y.

    Article  Google Scholar 

  • Alves, E. F., Bose, S. K., Francis, R. C., Colodette, J. L., Iakovlev, M., & Van Heiningen, A. (2010). Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohydrate Polymers, 82(4), 1097–1101. doi:10.1016/j.carbpol.2010.06.038.

    Article  Google Scholar 

  • Anderson, W., & Akin, D. (2008). Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. Journal of Industrial Microbiology & Biotechnology, 35(5), 355–366. doi:10.1007/s10295-007-0291-8.

    Article  Google Scholar 

  • Arai, T., Kosugi, A., Chan, H., Koukiekolo, R., Yukawa, H., Inui, M., et al. (2006). Properties of cellulosomal family 9 cellulases from Clostridium cellulovorans. Applied Microbiology and Biotechnology, 71(5), 654–660. doi:10.1007/s00253-005-0249-6.

    Article  Google Scholar 

  • Araujo, A., & Ward, O. (1990a). Extracellular mannanases and galactanases from selected fungi. Journal of Industrial Microbiology, 6(3), 171–178. doi:10.1007/bf01577692.

    Article  Google Scholar 

  • Araujo, A., & Ward, O. P. (1990b). Purification and some properties of the mannanases from Thielavia terrestris. Journal of Industrial Microbiology, 6(4), 269–274. doi:10.1007/bf01575872.

    Article  Google Scholar 

  • Arora, D. S., & Sharma, R. K. (2009). Enhancement in in vitro digestibility of wheat straw obtained from different geographical regions during solid state fermentation by white rot fungi. BioResources, 4(3), 909–920.

    Google Scholar 

  • Baldrian, P. (2006). Fungal laccases – Occurrence and properties. FEMS Microbiology Reviews, 30(2), 215–242. doi:10.1111/j.1574-4976.2005.00010.x.

    Article  Google Scholar 

  • Baldrian, P. (2008). Enzymes of saprotrophic basidiomycetes. In J. C. F. Lynne Boddy & W. Pieter van (Eds.), British Mycological Society Symposia Series (Vol. 28, pp. 19–41). London: Academic Press.

    Google Scholar 

  • Baldrian, P., Valášková, V., Merhautová, V., & Gabriel, J. (2005). Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Research in Microbiology, 156(5–6), 670–676. doi:10.1016/j.resmic.2005.03.007.

    Article  Google Scholar 

  • Banci, L. (1997). Structural properties of peroxidases. Journal of Biotechnology, 53(2–3), 253–263. doi:10.1016/S0168-1656(97)01677-5.

    Article  Google Scholar 

  • Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Aslam, N., & Walton, J. D. (2010). Synthetic enzyme mixtures for biomass deconstruction: Production and optimization of a core set. Biotechnology and Bioengineering, 106(5), 707–720. doi:10.1002/bit.22741.

    Article  Google Scholar 

  • Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Bongers, M., & Walton, J. D. (2010). Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. Bioresource Technology, 101(23), 9097–9105. doi:10.1016/j.biortech.2010.07.028.

    Article  Google Scholar 

  • Banerjee, G., Scott-Craig, J. S., & Walton, J. D. (2010). Improving enzymes for biomass conversion: A basic research perspective. BioEnergy Research, 3(1), 82–92. doi:10.1007/s12155-009-9067-5.

    Article  Google Scholar 

  • Bayer, E. A., Chanzy, H., Lamed, R., & Shoham, Y. (1998). Cellulose, cellulases and cellulosomes. Current Opinion in Structural Biology, 8(5), 548–557. doi:10.1016/S0959-440X(98)80143-7.

    Article  Google Scholar 

  • Bayer, E. A., Lamed, R., & Himmel, M. E. (2007). The potential of cellulases and cellulosomes for cellulosic waste management. Current Opinion in Biotechnology, 18(3), 237–245. doi:10.1016/j.copbio.2007.04.004.

    Article  Google Scholar 

  • Berka, R. M., Boominathan, K. C., et al. (1995). Aspergillus expression system. WO1995015391 A2.

    Google Scholar 

  • Biely, P. (2003). Xylanolytic enzymes. In Handbook of food enzymology. New York: Marcel Dekker.

    Google Scholar 

  • Biely, P., de Vries, R. P., Vršanská, M., & Visser, J. (2000). Inverting character of α-glucuronidase A from Aspergillus tubingensis. Biochimica et Biophysica Acta (BBA) - General Subjects, 1474(3), 360–364. doi:10.1016/S0304-4165(00)00029-5.

    Article  Google Scholar 

  • Blibech, M., Ghorbel, R., Fakhfakh, I., Ntarima, P., Piens, K., Bacha, A., et al. (2010). Purification and characterization of a low molecular weight of β-Mannanase from Penicillium occitanis Pol6. Applied Biochemistry and Biotechnology, 160(4), 1227–1240. doi:10.1007/s12010-009-8630-z.

    Article  Google Scholar 

  • Bourne, Y., & Henrissat, B. (2001). Glycoside hydrolases and glycosyltransferases: Families and functional modules. Current Opinion in Structural Biology, 11(5), 593–600. doi:10.1016/S0959-440X(00)00253-0.

    Article  Google Scholar 

  • Bridgeman, T. G., Jones, J. M., Shield, I., & Williams, P. T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856. doi:10.1016/j.fuel.2007.05.041.

    Article  Google Scholar 

  • Brownell, H. H., & Saddler, J. N. (1987). Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis. Biotechnology and Bioengineering, 29(2), 228–235. doi:10.1002/bit.260290213.

    Article  Google Scholar 

  • Brylev, A. N., Adylov, D. K., Tukhtaeva, G. G., Kamal’dinova, N. A., Abidova, L. D., & Rakhimov, D. A. (2001). Polysaccharides of rice straw. Chemistry of Natural Compounds, 37(6), 569–570. doi:10.1023/a:1014833319630.

    Article  Google Scholar 

  • Bura, R., Chandra, R., & Saddler, J. (2009). Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnology Progress, 25(2), 315–322. doi:10.1002/btpr.98.

    Article  Google Scholar 

  • Busso, D., Peleg, Y., Heidebrecht, T., Romier, C., Jacobovitch, Y., Dantes, A., et al. (2011). Expression of protein complexes using multiple Escherichia coli protein co-expression systems: A benchmarking study. Journal of Structural Biology, 175(2), 159–170. doi:10.1016/j.jsb.2011.03.004.

    Article  Google Scholar 

  • Cannella, D., Hsieh, C.-W., Felby, C., & Jørgensen, H. (2012). Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnology for Biofuels, 5(1), 1–10. doi:10.1186/1754-6834-5-26.

    Article  Google Scholar 

  • Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research, 37(Suppl 1), D233–D238. doi:10.1093/nar/gkn663.

    Article  Google Scholar 

  • Chandel, A. K., Chandrasekhar, G., Silva, M. B., & da Silva, S. S. (2012). The realm of cellulases in biorefinery development. Critical Reviews in Biotechnology, 32(3), 187–202.

    Article  Google Scholar 

  • Chang, V., & Holtzapple, M. (2000). Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, 84–86(1–9), 5–37. doi:10.1385/abab:84-86:1-9:5.

    Article  Google Scholar 

  • Charles, E. O. R., & Gerald, C. L. (Eds.). (1989). Biodeterioration research (Vol. 2). New York: Plenum press.

    Google Scholar 

  • Chaudhuri, B. K., & Sahai, V. (1993). Production of cellulase enzyme from lactose in batch and continuous cultures by a partially constitutive strain of Trichoderma reesei. Enzyme and Microbial Technology, 15(6), 513–518. doi:10.1016/0141-0229(93)90085-G.

    Article  Google Scholar 

  • Chen, M., Qin, Y., Cao, Q., Liu, G., Li, J., Li, Z., et al. (2013). Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellular β-glucosidase in Penicillium decumbens. Bioresource Technology, 137, 33–40. doi:10.1016/j.biortech.2013.03.099.

    Article  Google Scholar 

  • Cheng, K.-K., Cai, B.-Y., Zhang, J.-A., Ling, H.-Z., Zhou, Y.-J., Ge, J.-P., et al. (2008). Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal, 38(1), 105–109. doi:10.1016/j.bej.2007.07.012.

    Article  Google Scholar 

  • Cherry, J. R., & Fidantsef, A. L. (2003). Directed evolution of industrial enzymes: An update. Current Opinion in Biotechnology, 14(4), 438–443. doi:10.1016/S0958-1669(03)00099-5.

    Article  Google Scholar 

  • Ciaramella, M., Cannio, R., Moracci, M., Pisani, F. M., & Rossi, M. (1995). Molecular biology of extremophiles. World Journal of Microbiology and Biotechnology, 11(1), 71–84. doi:10.1007/bf00339137.

    Article  Google Scholar 

  • Claus, H. (2004). Laccases: Structure, reactions, distribution. Micron, 35(1–2), 93–96. doi:10.1016/j.micron.2003.10.029.

    Article  Google Scholar 

  • Couturier, M., Navarro, D., Olivé, C., Chevret, D., Haon, M., Favel, A., et al. (2012). Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics, 13(1), 1–14. doi:10.1186/1471-2164-13-57.

    Article  Google Scholar 

  • da Silva Delabona, P., Sanchez Farinas, C., da Silva Lima, D. J., & da Cruz Pradella, J. G. (2013). Experimental mixture design as a tool to enhance glycosyl hydrolases production by a new Trichoderma harzianum P49P11 strain cultivated under controlled bioreactor submerged fermentation. Bioresource Technology, 132, 401–405. doi:10.1016/j.biortech.2012.11.087.

    Article  Google Scholar 

  • Dalbøge, H., & Heldt-Hansen, H. P. (1994). A novel method for efficient expression cloning of fungal enzyme genes. Molecular and General Genetics MGG, 243(3), 253–260. doi:10.1007/bf00301060.

    Article  Google Scholar 

  • Daniel, G., Asiegbu, F., & Johansson, M. (1998). The saprotrophic wood-degrading abilities of Heterobasidium annosum intersterility groups P and S. Mycological Research, 102(8), 991–997. doi:10.1017/S0953756297005935.

    Article  Google Scholar 

  • Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences, 5(6), 578–595.

    Article  Google Scholar 

  • de Carvalho, C. C. C. R. (2011). Enzymatic and whole cell catalysis: Finding new strategies for old processes. Biotechnology Advances, 29(1), 75–83. doi:10.1016/j.biotechadv.2010.09.001.

    Article  Google Scholar 

  • de Vries, R. P., Poulsen, C. H., Madrid, S., & Visser, J. (1998). aguA, the gene encoding an extracellular α-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. Journal of Bacteriology, 180(2), 243–249.

    Google Scholar 

  • de Vries, R. P., vanKuyk, P. A., Kester, H. C. M., & Visser, J. (2002). The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochemical Journal, 363(2), 377–386.

    Article  Google Scholar 

  • Delabona, P. D. S., Pirota, R. D. P. B., Codima, C. A., Tremacoldi, C. R., Rodrigues, A., & Farinas, C. S. (2012). Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass and Bioenergy, 37, 243–250. doi:10.1016/j.biombioe.2011.12.006.

    Article  Google Scholar 

  • Dhawan, S., & Kaur, J. (2007). Microbial mannanases: An overview of production and applications. Critical Reviews in Biotechnology, 27(4), 197–216. doi:10.1080/07388550701775919.

    Article  Google Scholar 

  • Dhillon, N., Chhibber, S., Saxena, M., Pajni, S., & Vadehra, D. V. (1985). A constitutive endoglucanase (CMCase) from Bacillus licheniformis-1. Biotechnology Letters, 7(9), 695–697. doi:10.1007/bf01040212.

    Article  Google Scholar 

  • Dien, B. S., Ximenes, E. A., O’Bryan, P. J., Moniruzzaman, M., Li, X.-L., Balan, V., et al. (2008). Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresource Technology, 99(12), 5216–5225. doi:10.1016/j.biortech.2007.09.030.

    Article  Google Scholar 

  • Dijkerman, R., Bhansing, D. C. P., Op den Camp, H. J. M., van der Drift, C., & Vogels, G. D. (1997). Degradation of structural polysaccharides by the plant cell-wall degrading enzyme system from anaerobic fungi: An application study. Enzyme and Microbial Technology, 21(2), 130–136. doi:10.1016/S0141-0229(96)00251-7.

    Article  Google Scholar 

  • Ding, S.-Y., Liu, Y.-S., Zeng, Y., Himmel, M. E., Baker, J. O., & Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 338(6110), 1055–1060. doi:10.1126/science.1227491.

    Article  Google Scholar 

  • Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R. M., & Steinmüller, H. (1987). The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Applied Microbiology and Biotechnology, 26(5), 485–494. doi:10.1007/bf00253537.

    Article  Google Scholar 

  • Dueñas, R., Tengerdy, R. P., & Gutierrez-Correa, M. (1995). Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World Journal of Microbiology and Biotechnology, 11(3), 333–337. doi:10.1007/bf00367112.

    Article  Google Scholar 

  • Duff, S. B., Cooper, D., & Fuller, O. M. (1985). Cellulase and beta-glucosidase production by mixed culture of Trichoderma reesei Rut C-30 and Aspergillus phoenicis. Biotechnology Letters, 7(3), 185–190. doi:10.1007/bf01027817.

    Article  Google Scholar 

  • Duff, S. J. B., Cooper, D. G., & Fuller, O. M. (1987). Effect of media composition and growth conditions on production of cellulase and β-glucosidase by a mixed fungal fermentation. Enzyme and Microbial Technology, 9(1), 47–52. doi:10.1016/0141-0229(87)90048-2.

    Article  Google Scholar 

  • Duffner, F., Bertoldo, C., Andersen, J. T., Wagner, K., & Antranikian, G. (2000). A new thermoactive pullulanase from Desulfurococcus mucosus: Cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. Journal of Bacteriology, 182(22), 6331–6338.

    Article  Google Scholar 

  • Durand, H., Clanet, M., & Tiraby, G. (1988). Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme and Microbial Technology, 10(6), 341–346. doi:10.1016/0141-0229(88)90012-9.

    Article  Google Scholar 

  • Elkins, J. G., Raman, B., & Keller, M. (2010). Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Current Opinion in Biotechnology, 21(5), 657–662. doi:10.1016/j.copbio.2010.05.008.

    Article  Google Scholar 

  • Ellis, J. T., & Magnuson, T. S. (2012). Thermostable and alkalistable xylanases produced by the thermophilic bacterium Anoxybacillus flavithermus TWXYL3. ISRN Microbiology, 2012, 8. doi:10.5402/2012/517524.

    Google Scholar 

  • Eriksson, K.-E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood components. Berlin, Germany: Springer Series in Wood Science.

    Book  Google Scholar 

  • Estrada, P., Mata, I., Dominguez, J. M., Castillón, M. P., & Acebal, C. (1990). Kinetic mechanism of β-glucosidase from Trichoderma reesei QM 9414. Biochimica et Biophysica Acta (BBA) - General Subjects, 1033(3), 298–304. doi:10.1016/0304-4165(90)90137-L.

    Article  Google Scholar 

  • Fackler, K., Gradinger, C., Hinterstoisser, B., Messner, K., & Schwanninger, M. (2006). Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme and Microbial Technology, 39(7), 1476–1483. doi:10.1016/j.enzmictec.2006.03.043.

    Article  Google Scholar 

  • Fagerstedt, K. V., Kukkola, E. M., Koistinen, V. V. T., Takahashi, J., & Marjamaa, K. (2010). Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. Journal of Integrative Plant Biology, 52(2), 186–194. doi:10.1111/j.1744-7909.2010.00928.x.

    Article  Google Scholar 

  • Fang, H., & Xia, L. (2013). High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production. Bioresource Technology, 144, 693–697. doi:10.1016/j.biortech.2013.06.120.

    Article  Google Scholar 

  • Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. Journal of Bioscience and Bioengineering, 107(3), 256–261. doi:10.1016/j.jbiosc.2008.11.022.

    Article  Google Scholar 

  • Faulds, C. B., & Williamson, G. (1995). Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger. Applied Microbiology and Biotechnology, 43(6), 1082–1087. doi:10.1007/bf00166929.

    Article  Google Scholar 

  • Fenn, P., & Kent Kirk, T. (1981). Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Archives of Microbiology, 130(1), 59–65. doi:10.1007/bf00527073.

    Article  Google Scholar 

  • Ferraroni, M., Myasoedova, N., Schmatchenko, V., Leontievsky, A., Golovleva, L., Scozzafava, A., et al. (2007). Crystal structure of a blue laccase from Lentinus tigrinus: Evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Structural Biology, 7(1), 60.

    Article  Google Scholar 

  • Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry, 278(34), 31988–31997. doi:10.1074/jbc.M304750200.

    Article  Google Scholar 

  • Foust, T. D., Wallace, R., Wooley, R., Sheehan, J., Ibsen, K., Dayton, D., et al. (2007). A national laboratory market and technology assessment of the 30 × 30 scenario. Technical Report, NREL/TP-510-40942.

    Google Scholar 

  • Friedrich, J., Cimerman, A., & Perdih, A. (1987). Mixed culture of Aspergillus awamori and Trichoderma reesei for bioconversion of apple distillery waste. Applied Microbiology and Biotechnology, 26(3), 299–303. doi:10.1007/bf00286328.

    Article  Google Scholar 

  • Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnology for Biofuels, 2(1), 24.

    Article  Google Scholar 

  • Gabelle, J. C., Jourdier, E., Licht, R. B., Ben Chaabane, F., Henaut, I., Morchain, J., et al. (2012). Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chemical Engineering Science, 75, 408–417. doi:10.1016/j.ces.2012.03.053.

    Article  Google Scholar 

  • Gamarra, N., Villena, G., & Gutiérrez-Correa, M. (2010). Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Applied Microbiology and Biotechnology, 87(2), 545–551. doi:10.1007/s00253-010-2540-4.

    Article  Google Scholar 

  • Gao, D., Uppugundla, N., Chundawat, S., Yu, X., Hermanson, S., Gowda, K., et al. (2011). Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnology for Biofuels, 4(1), 5.

    Article  Google Scholar 

  • García-Aparicio, M., Ballesteros, I., González, A., Oliva, J., Ballesteros, M., & Negro, M. (2006). Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. In J. McMillan, W. Adney, J. Mielenz, & K. T. Klasson (Eds.), Twenty-seventh symposium on biotechnology for fuels and chemicals (pp. 278–288). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Garvey, M., Klose, H., et al. (2013). Cellulases for biomass degradation: Comparing recombinant cellulase expression platforms. Trends in Biotechnology, 31(10), 581–593.

    Article  Google Scholar 

  • Gefen, G., Anbar, M., Morag, E., Lamed, R., & Bayer, E. A. (2012). Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proceedings of the National Academy of Sciences, 109(26), 10298–10303. doi:10.1073/pnas.1202747109.

    Article  Google Scholar 

  • Germann, U. A., Müller, G., Hunziker, P. E., & Lerch, K. (1988). Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. Journal of Biological Chemistry, 263(2), 885–896.

    Google Scholar 

  • Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., & Warren, R. A. (1991). Domains in microbial beta-1, 4-glycanases: Sequence conservation, function, and enzyme families. Microbiological Reviews, 55(2), 303–315.

    Google Scholar 

  • Glenn, J. K., Morgan, M. A., Mayfield, M. B., Kuwahara, M., & Gold, M. H. (1983). An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications, 114(3), 1077–1083. doi:10.1016/0006-291X(83)90672-1.

    Article  Google Scholar 

  • Golan, G., Shallom, D., Teplitsky, A., Zaide, G., Shulami, S., Baasov, T., et al. (2004). Crystal structures of Geobacillus stearothermophilus α-glucuronidase complexed with its substrate and products: Mechanistic implications. Journal of Biological Chemistry, 279(4), 3014–3024. doi:10.1074/jbc.M310098200.

    Article  Google Scholar 

  • Graf, E. (1992). Antioxidant potential of ferulic acid. Free Radical Biology and Medicine, 13(4), 435–448. doi:10.1016/0891-5849(92)90184-I.

    Article  Google Scholar 

  • Grange, D., Haan, R., & Zyl, W. (2010). Engineering cellulolytic ability into bioprocessing organisms. Applied Microbiology and Biotechnology, 87(4), 1195–1208. doi:10.1007/s00253-010-2660-x.

    Article  Google Scholar 

  • Großwindhager, C., Sachslehner, A., Nidetzky, B., & Haltrich, D. (1999). Endo-β-1,4-d-mannanase is efficiently produced by Sclerotium (Athelia) rolfsii under derepressed conditions. Journal of Biotechnology, 67(2–3), 189–203. doi:10.1016/S0168-1656(98)00176-X.

    Article  Google Scholar 

  • Gübitz, G., Laussamauer, B., Schubert-Zsilavccz, M., & Steiner, W. (2000). Production of 61-α-galactosyl-β-mannotriose with endo-1,4-β-mannanases from Schizophyllum commune and Sclerotium rolfsii. Enzyme and Microbial Technology, 26(1), 15–21.

    Article  Google Scholar 

  • Guerra, A., Mendonça, R., Ferraz, A., Lu, F., & Ralph, J. (2004). Structural characterization of lignin during pinus taeda wood treatment with Ceriporiopsis subvermispora. Applied and Environmental Microbiology, 70(7), 4073–4078. doi:10.1128/aem.70.7.4073-4078.2004.

    Article  Google Scholar 

  • Guillén, F., Martı́nez, M. A. J., Muñoz, C., & Martı́nez, A. T. (1997). Quinone redox cycling in the ligninolytic funguspleurotus eryngiileading to extracellular production of superoxide anion radical. Archives of Biochemistry and Biophysics, 339(1), 190–199. doi:10.1006/abbi.1996.9834.

  • Guillén, F., MartÍnez, A. T., & MartÍnez, M. J. (1992). Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. European Journal of Biochemistry, 209(2), 603–611. doi:10.1111/j.1432-1033.1992.tb17326.x.

    Article  Google Scholar 

  • Gutiérrez, A., Caramelo, L., Prieto, A., Martínez, M. J., & Martínez, A. T. (1994). Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Applied and Environmental Microbiology, 60(6), 1783–1788.

    Google Scholar 

  • Hakulinen, N., Kruus, K., Koivula, A., & Rouvinen, J. (2006). A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochemical and Biophysical Research Communications, 350(4), 929–934. doi:10.1016/j.bbrc.2006.09.144.

    Article  Google Scholar 

  • Haltrich, D., Laussamayer, B., Steiner, W., Nidetzky, B., & Kulbe, K. D. (1994). Cellulolytic and hemicellulolytic enzymes of sclerotium rolfsii: Optimization of the culture medium and enzymatic hydrolysis of lignocellulosic material. Bioresource Technology, 50(1), 43–50. doi:10.1016/0960-8524(94)90219-4.

    Article  Google Scholar 

  • Harris, P. V., Welner, D., McFarland, K. C., Re, E., Navarro Poulsen, J.-C., Brown, K., et al. (2010). Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry, 49(15), 3305–3316. doi:10.1021/bi100009p.

    Article  Google Scholar 

  • Heidorne, F. O., Magalhães, P. O., Ferraz, A. L., & Milagres, A. M. F. (2006). Characterization of hemicellulases and cellulases produced by Ceriporiopsis subvermispora grown on wood under biopulping conditions. Enzyme and Microbial Technology, 38(3–4), 436–442. doi:10.1016/j.enzmictec.2005.06.015.

    Article  Google Scholar 

  • Heinfling, A., Martínez, M. J., Martínez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Applied and Environmental Microbiology, 64(8), 2788–2793.

    Google Scholar 

  • Heinfling, A., Martı́nez, M. A. J., Martı́nez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiology Letters, 165(1), 43–50. doi:10.1016/S0378-1097(98)00255-9.

  • Heinfling, A., Ruiz-Dueñas, F. J., Martı́nez, M. A. J., Bergbauer, M., Szewzyk, U., & Martı́nez, A. T. (1998). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Letters, 428(3), 141–146. doi:10.1016/S0014-5793(98)00512-2.

    Article  Google Scholar 

  • Hemsworth, G. R., Davies, G. J., & Walton, P. H. (2013). Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Current Opinion in Structural Biology, 23, 660–668. doi:10.1016/j.sbi.2013.05.006.

    Article  Google Scholar 

  • Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18. doi:10.1016/j.biortech.2008.05.027.

    Article  Google Scholar 

  • Henriksson, G., Akin, D. E., Slomczynski, D., & Eriksson, K.-E. L. (1999). Production of highly efficient enzymes for flax retting by Rhizomucor pusillus. Journal of Biotechnology, 68(2–3), 115–123. doi:10.1016/S0168-1656(98)00192-8.

    Article  Google Scholar 

  • Henriksson, G., Ander, P., Pettersson, B., & Pettersson, G. (1995). Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Applied Microbiology and Biotechnology, 42(5), 790–796. doi:10.1007/bf00171963.

    Article  Google Scholar 

  • Henriksson, G., Johansson, G., & Pettersson, G. (2000). A critical review of cellobiose dehydrogenases. Journal of Biotechnology, 78(2), 93–113. doi:10.1016/S0168-1656(00)00206-6.

    Article  Google Scholar 

  • Henrissat, B., Teeri, T. T., & Warren, R. A. J. (1998). A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Letters, 425(2), 352–354. doi:10.1016/S0014-5793(98)00265-8.

    Article  Google Scholar 

  • Herrera, A., Téllez-Luis, S. J., Ramı́rez, J. A., & Vázquez, M. (2003). Production of xylose from sorghum straw using hydrochloric acid. Journal of Cereal Science, 37(3), 267–274. doi:10.1006/jcrs.2002.0510.

    Article  Google Scholar 

  • Hideno, A., Inoue, H., Tsukahara, K., Yano, S., Fang, X., Endo, T., et al. (2011). Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme and Microbial Technology, 48(2), 162–168. doi:10.1016/j.enzmictec.2010.10.005.

    Article  Google Scholar 

  • Higuchi, T. (1997). Biosynthesis of wood components. In Biochemistry and molecular biology of wood (pp. 93–262). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Hildén, K., Hakala, T., Maijala, P., Lundell, T., & Hatakka, A. (2007). Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology, 77(2), 301–309. doi:10.1007/s00253-007-1155-x.

    Article  Google Scholar 

  • Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807. doi:10.1126/science.1137016.

    Article  Google Scholar 

  • Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). A large family of class III plant peroxidases. Plant and Cell Physiology, 42(5), 462–468. doi:10.1093/pcp/pce061.

    Article  Google Scholar 

  • Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186. doi:10.1007/s00253-003-1504-3.

    Article  Google Scholar 

  • Hong, M.-R., Park, C.-S., & Oh, D.-K. (2009). Characterization of a thermostable endo-1,5-α-l-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnology Letters, 31(9), 1439–1443. doi:10.1007/s10529-009-0019-0.

    Article  Google Scholar 

  • Horikoshi, K. (1997). Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles, 1(2), 61–66.

    Article  Google Scholar 

  • Horn, S., Vaaje-Kolstad, G., Westereng, B., & Eijsink, V. G. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5(1), 45.

    Article  Google Scholar 

  • Howard, R. L., Abotsi, E., Jansen van Rensburg, E. L., & Howard, S. (2003). Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602–619.

    Article  Google Scholar 

  • Hu, J., Arantes, V., & Saddler, J. (2011). The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnology for Biofuels, 4(1), 36.

    Article  Google Scholar 

  • Hu, H. L., van den Brink, J., Gruben, B. S., Wösten, H. A. B., Gu, J. D., & de Vries, R. P. (2011). Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. International Biodeterioration & Biodegradation, 65(1), 248–252. doi:10.1016/j.ibiod.2010.11.008.

    Article  Google Scholar 

  • Hyeon, J. E., Jeon, W. J., Whang, S. Y., & Han, S. O. (2011). Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme and Microbial Technology, 48(4–5), 371–377. doi:10.1016/j.enzmictec.2010.12.014.

    Article  Google Scholar 

  • Iiyama, K., Lam, T., & Stone, B. A. (1994). Covalent cross-links in the cell wall. Plant Physiology, 104(2), 315–320.

    Article  Google Scholar 

  • Illman, B., Meinholtz, D., & Highley, T. (1988). Generation of hydroxyl radicals by the brown-rot fungus, Postia placenta. Document No. IRG/WP/1360.

    Google Scholar 

  • Iyer, G., & Chattoo, B. B. (2003). Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea. FEMS Microbiology Letters, 227(1), 121–126. doi:10.1016/S0378-1097(03)00658-X.

    Article  Google Scholar 

  • Jeya, M., Joo, A.-R., Lee, K.-M., Tiwari, M., Lee, K.-M., Kim, S.-H., et al. (2010). Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied Microbiology and Biotechnology, 86(5), 1473–1484. doi:10.1007/s00253-009-2395-8.

    Article  Google Scholar 

  • Jiang, X., Geng, A., He, N., & Li, Q. (2011). New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. Journal of Bioscience and Bioengineering, 111(2), 121–127. doi:10.1016/j.jbiosc.2010.09.004.

    Article  Google Scholar 

  • Johnson, K. G. (1990). Exocellular β-mannanases from hemicellulolytic fungi. World Journal of Microbiology and Biotechnology, 6(2), 209–217. doi:10.1007/bf01200943.

    Article  MathSciNet  Google Scholar 

  • Joo, A.-R., Jeya, M., Lee, K.-M., Lee, K.-M., Moon, H.-J., Kim, Y.-S., et al. (2010). Production and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum. Process Biochemistry, 45(6), 851–858. doi:10.1016/j.procbio.2010.02.005.

    Article  Google Scholar 

  • Jørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson, L. (2005). Production of cellulases and hemicellulases by three Penicillium species: Effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme and Microbial Technology, 36(1), 42–48. doi:10.1016/j.enzmictec.2004.03.023.

    Article  Google Scholar 

  • Jørgensen, H., & Olsson, L. (2006). Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzyme and Microbial Technology, 38(3–4), 381–390. doi:10.1016/j.enzmictec.2005.06.018.

    Article  Google Scholar 

  • Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., & Viikari, L. (2005). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry, 40(11), 3519–3525. doi:10.1016/j.procbio.2005.03.057.

    Article  Google Scholar 

  • Jun, H., Guangye, H., & Daiwen, C. (2013). Insights into enzyme secretion by filamentous fungi: Comparative proteome analysis of Trichoderma reesei grown on different carbon sources. Journal of Proteomics, 89, 191–201. doi:10.1016/j.jprot.2013.06.014.

    Article  Google Scholar 

  • Kadam, K. L., & McMillan, J. D. (2003). Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technology, 88(1), 17–25. doi:10.1016/S0960-8524(02)00269-9.

    Article  Google Scholar 

  • Kamper, J., Kahmann, R., Bolker, M., Ma, L.-J., Brefort, T., Saville, B. J., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 444(7115), 97–101. doi:10.1038/nature05248.

    Article  Google Scholar 

  • Kazi, F. K., Fortman, J. A., Anex, R. P., Hsu, D. D., Aden, A., Dutta, A., et al. (2010). Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89(Suppl 1), S20–S28. doi:10.1016/j.fuel.2010.01.001.

    Article  Google Scholar 

  • Kersten, P. J. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences, 87(8), 2936–2940. doi:10.1073/pnas.87.8.2936.

    Article  Google Scholar 

  • Kim, C. H. (1995). Characterization and substrate specificity of an endo-beta-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Applied and Environmental Microbiology, 61(3), 959–965.

    Google Scholar 

  • Kim, S., & Dale, B. E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26(4), 361–375. doi:10.1016/j.biombioe.2003.08.002.

    Article  Google Scholar 

  • Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2010). Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries. Biomass and Bioenergy, 34(12), 1914–1921. doi:10.1016/j.biombioe.2010.07.033.

    Article  Google Scholar 

  • Knauf, M., & Moniruzzaman, M. (2004). Lignocellulosic biomass processing: A perspective. International Sugar Journal, 106(1263), 147–150.

    Google Scholar 

  • Knežević, A., Milovanović, I., Stajić, M., Lončar, N., Brčeski, I., Vukojević, J., et al. (2013). Lignin degradation by selected fungal species. Bioresource Technology, 138, 117–123. doi:10.1016/j.biortech.2013.03.182.

    Article  Google Scholar 

  • Knowles, J. R. (1987). Tinkering with enzymes: What are we learning? Science, 236(4806), 1252–1258.

    Article  Google Scholar 

  • Kolarova, N., & Augustín, J. (2001). Production of polysaccharide hydrolases in the genus Rhizopus. Folia Microbiologica, 46(3), 223–226. doi:10.1007/bf02818537.

    Article  Google Scholar 

  • Kootstra, A. M., Beeftink, H., Scott, E., & Sanders, J. (2009). Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnology for Biofuels, 2(1), 31.

    Article  Google Scholar 

  • Kootstra, A. M. J., Mosier, N. S., Scott, E. L., Beeftink, H. H., & Sanders, J. P. M. (2009). Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochemical Engineering Journal, 43(1), 92–97. doi:10.1016/j.bej.2008.09.004.

    Article  Google Scholar 

  • Kormelink, F. J. M., Gruppen, H., Viëtor, R. J., & Voragen, A. G. J. (1993). Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydrate Research, 249(2), 355–367. doi:10.1016/0008-6215(93)84100-K.

    Article  Google Scholar 

  • Kormelink, F. J. M., Lefebvre, B., Strozyk, F., & Voragen, A. G. J. (1993). Purification and characterization of an acetyl xylan esterase from Aspergillus niger. Journal of Biotechnology, 27(3), 267–282. doi:10.1016/0168-1656(93)90090-A.

    Article  Google Scholar 

  • Koschorreck, K., Richter, S., Ene, A., Roduner, E., Schmid, R., & Urlacher, V. (2008). Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Applied Microbiology and Biotechnology, 79(2), 217–224. doi:10.1007/s00253-008-1417-2.

    Article  Google Scholar 

  • Kovács, K., Megyeri, L., Szakacs, G., Kubicek, C. P., Galbe, M., & Zacchi, G. (2008). Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme and Microbial Technology, 43(1), 48–55. doi:10.1016/j.enzmictec.2008.02.006.

    Article  Google Scholar 

  • Krishna, C. (2005). Solid-state fermentation systems—An overview. Critical Reviews in Biotechnology, 25(1–2), 1–30. doi:10.1080/07388550590925383.

    Article  Google Scholar 

  • Kristufek, D., Zeilinger, S., & Kubicek, C. P. (1995). Regulation of β-xylosidase formation by xylose in Trichoderma reesei. Applied Microbiology and Biotechnology, 42(5), 713–717. doi:10.1007/bf00171950.

    Article  Google Scholar 

  • Kubicek, C., Mikus, M., Schuster, A., Schmoll, M., & Seiboth, B. (2009). Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for Biofuels, 2(1), 1–14. doi:10.1186/1754-6834-2-19.

    Article  Google Scholar 

  • Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23(4), 411–456. doi:10.1016/S0168-6445(99)00006-6.

    Article  Google Scholar 

  • Kumar, R., Singh, S., & Singh, O. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377–391. doi:10.1007/s10295-008-0327-8.

    Article  Google Scholar 

  • Kuwahara, M., Glenn, J. K., Morgan, M. A., & Gold, M. H. (1984). Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters, 169(2), 247–250. doi:10.1016/0014-5793(84)80327-0.

    Article  Google Scholar 

  • Lan, T.-Q., Wei, D., Yang, S.-T., & Liu, X. (2013). Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor. Bioresource Technology, 133, 175–182. doi:10.1016/j.biortech.2013.01.088.

    Article  Google Scholar 

  • Langston, J. A., Shaghasi, T., Abbate, E., Xu, F., Vlasenko, E., & Sweeney, M. D. (2011). Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Applied and Environmental Microbiology, 77(19), 7007–7015. doi:10.1128/aem.05815-11.

    Article  Google Scholar 

  • Le Crom, S., Schackwitz, W., Pennacchio, L., Magnuson, J. K., Culley, D. E., Collett, J. R., et al. (2009). Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proceedings of the National Academy of Sciences, 106(38), 16151–16156. doi:10.1073/pnas.0905848106.

    Article  Google Scholar 

  • Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56(1), 1–24. doi:10.1016/S0168-1656(97)00073-4.

    Article  Google Scholar 

  • Lee, K. H., Wi, S. G., Singh, A. P., & Kim, Y. S. (2004). Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. Journal of Wood Science, 50(3), 281–284. doi:10.1007/s10086-003-0558-2.

    Article  Google Scholar 

  • Li, M.-F., Fan, Y.-M., Xu, F., Sun, R.-C., & Zhang, X.-L. (2010). Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Industrial Crops and Products, 32(3), 551–559. doi:10.1016/j.indcrop.2010.07.004.

    Article  Google Scholar 

  • Li, H., Kim, N.-J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresource Technology, 100(13), 3245–3251. doi:10.1016/j.biortech.2009.01.021.

    Article  Google Scholar 

  • Liao, H., Zhang, X.-Z., Rollin, J. A., & Zhang, Y.-H. P. (2011). A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnology Journal, 6(11), 1409–1418. doi:10.1002/biot.201100157.

    Article  Google Scholar 

  • Lin, Z.-X., Zhang, H.-M., Ji, X.-J., Chen, J.-W., & Huang, H. (2011). Hydrolytic enzyme of cellulose for complex formulation applied research. Applied Biochemistry and Biotechnology, 164(1), 23–33. doi:10.1007/s12010-010-9111-0.

    Article  Google Scholar 

  • Liu, M., & Yu, H. (2012). Cocktail production of an endo-β-xylanase and a β-glucosidase from Trichoderma reesei QM 9414 in Escherichia coli. Biochemical Engineering Journal, 68, 1–6. doi:10.1016/j.bej.2012.07.003.

    Article  Google Scholar 

  • Ljungdahl, L. G. (2008). The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Annals of the New York Academy of Sciences, 1125(1), 308–321. doi:10.1196/annals.1419.030.

    Article  Google Scholar 

  • Lozovaya, V., Lygin, A., Zernova, O., Ulanov, A., Li, S., Hartman, G., et al. (2007). Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta, 225(3), 665–679. doi:10.1007/s00425-006-0368-z.

    Article  Google Scholar 

  • Lu, H., Luo, H., Shi, P., Huang, H., Meng, K., Yang, P., et al. (2013). A novel thermophilic endo-β-1,4-mannanase from Aspergillus nidulans XZ3: Functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Applied Microbiology and Biotechnology, 98, 2155–2163. doi:10.1007/s00253-013-5112-6.

    Article  Google Scholar 

  • Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). How biotech can transform biofuels. Nature Biotechnology, 26(2), 169–172. doi:10.1038/nbt0208-169.

    Article  Google Scholar 

  • Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577. doi:10.1128/mmbr.66.3.506-577.2002.

    Article  Google Scholar 

  • Maeda, R. N., Barcelos, C. A., Anna, L. M. M. S., & Pereira, N., Jr. (2013). Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Journal of Biotechnology, 163(1), 38–44. doi:10.1016/j.jbiotec.2012.10.014.

    Article  Google Scholar 

  • Maheshwari, D. K., Gohade, S., Paul, J., & Varma, A. (1994). Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation. Carbohydrate Polymers, 23(3), 161–163. doi:10.1016/0144-8617(94)90098-1.

    Article  Google Scholar 

  • Mai, C., Kües, U., & Militz, H. (2004). Biotechnology in the wood industry. Applied Microbiology and Biotechnology, 63(5), 477–494. doi:10.1007/s00253-003-1411-7.

    Article  Google Scholar 

  • Maki, M., Leung, K. T., & Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences, 5(5), 500–516.

    Article  Google Scholar 

  • Malherbe, S., & Cloete, T. E. (2002). Lignocellulose biodegradation: Fundamentals and applications. Reviews in Environmental Science and Biotechnology, 1(2), 105–114. doi:10.1023/a:1020858910646.

    Article  Google Scholar 

  • Mandels, M., & Weber, J. (1969). The production of cellulases. In Cellulases and their applications (Vol. 95, pp. 391–414). Washington, DC: American Chemical Society.

    Google Scholar 

  • Marbach, I., Harel, E., & Mayer, A. M. (1983). Inducer and culture medium dependent properties of extracellular laccase from Botrytis cinerea. Phytochemistry, 22(7), 1535–1538. doi:10.1016/0031-9422(83)80083-1.

    Article  Google Scholar 

  • Margolles-Clark, E., Tenkanen, M., Nakari-Setälä, T., & Penttilä, M. (1996). Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 62(10), 3840–3846.

    Google Scholar 

  • Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5), 553–560. doi:10.1038/nbt1403.

    Article  Google Scholar 

  • Martínez, M. J., Ruiz-Dueñas, F. J., Guillén, F., & Martínez, Á. T. (1996). Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. European Journal of Biochemistry, 237(2), 424–432. doi:10.1111/j.1432-1033.1996.0424k.x.

    Article  Google Scholar 

  • Martínez, A. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., et al. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8(3), 195–204.

    Google Scholar 

  • Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., & Ramos, L. P. (2008). Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technology, 99(5), 1417–1424. doi:10.1016/j.biortech.2007.01.060.

    Article  Google Scholar 

  • Martins, L. G. O., Soares, C. M., Pereira, M. M., Teixeira, M., Costa, T., Jones, G. H., et al. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. Journal of Biological Chemistry, 277(21), 18849–18859. doi:10.1074/jbc.M200827200.

  • Mazzoli, R., Lamberti, C., & Pessione, E. (2012). Engineering new metabolic capabilities in bacteria: Lessons from recombinant cellulolytic strategies. Trends in Biotechnology, 30(2), 111–119.

    Article  Google Scholar 

  • McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46. doi:10.1016/S0960-8524(01)00118-3.

    Article  Google Scholar 

  • McNeil, M., Darvill, A. G., Fry, S. C., & Albersheim, P. (1984). Structure and function of the primary cell walls of plants. Annual Review of Biochemistry, 53(1), 625–663. doi:10.1146/annurev.bi.53.070184.003205.

    Article  Google Scholar 

  • Merino, S., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. In L. Olsson (Ed.), Biofuels (Vol. 108, pp. 95–120). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Mester, T., & Field, J. A. (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. Journal of Biological Chemistry, 273(25), 15412–15417. doi:10.1074/jbc.273.25.15412.

    Article  Google Scholar 

  • Metz, B., Kossen, N. W. F., & Suijdam, J. C. (1979). The rheology of mould suspensions. In Advances in biochemical engineering, (Vol. 11, pp. 103–156). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Michniewicz, A., Ullrich, R., Ledakowicz, S., & Hofrichter, M. (2006). The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Applied Microbiology and Biotechnology, 69(6), 682–688. doi:10.1007/s00253-005-0015-9.

    Article  Google Scholar 

  • Miller, P. S., & Blum, P. H. (2010). Extremophile-inspired strategies for enzymatic biomass saccharification. Environmental Technology, 31(8–9), 1005–1015. doi:10.1080/09593330903536113.

  • Miron, J., Yosef, E., & Ben-Ghedalia, D. (2001). Composition and in vitro digestibility of monosaccharide constituents of selected byproduct feeds. Journal of Agricultural and Food Chemistry, 49(5), 2322–2326. doi:10.1021/jf0008700.

    Article  Google Scholar 

  • Mishra, C., Seeta, R., & Rao, M. (1985). Production of xylanolytic enzymes in association with the cellulolytic activities of Penicillium funiculosum. Enzyme and Microbial Technology, 7(6), 295–299. doi:10.1016/0141-0229(85)90089-4.

    Article  Google Scholar 

  • Monsalve, G., John, F., Medina, P., Ruiz, C., & Adriana, A. (2006). Ethanol production of banana shell and cassava starch. Dyna Rev fac nac minas, 73, 21–27.

    Google Scholar 

  • Montenecourt, B. S., & Eveleigh, D. E. (1977). Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Applied and Environmental Microbiology, 34(6), 777–782.

    Google Scholar 

  • Montenecourt, B. S., & Eveleigh, D. E. (1979). Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. In Hydrolysis of cellulose: Mechanisms of enzymatic and acid catalysis (Vol. 181, pp. 289–301). Washington, DC: American Chemical Society.

    Google Scholar 

  • Morais, M., & Pereira, H. (2012). Variation of extractives content in heartwood and sapwood of Eucalyptus globulus trees. Wood Science and Technology, 46(4), 709–719. doi:10.1007/s00226-011-0438-7.

    Article  Google Scholar 

  • Moredo, N., Lorenzo, M., Domínguez, A., Moldes, D., Cameselle, C., & Sanroman, A. (2003). Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World Journal of Microbiology and Biotechnology, 19(7), 665–669. doi:10.1023/a:1025198917474.

    Article  Google Scholar 

  • Moreira, L. R. S., & Filho, E. X. F. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology, 79(2), 165–178. doi:10.1007/s00253-008-1423-4.

    Article  Google Scholar 

  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. doi:10.1016/j.biortech.2004.06.025.

    Article  Google Scholar 

  • Mosihuzzaman, M., Quddus, A., Nahar, N., & Theander, O. (1989). Comparative study of carbohydrates in the two major species of jute (Corchorus capsularis and Corchorus olitorius. Journal of the Science of Food and Agriculture, 48(3), 305–310. doi:10.1002/jsfa.2740480306.

    Article  Google Scholar 

  • Murray, P., Aro, N., Collins, C., Grassick, A., Penttilä, M., Saloheimo, M., et al. (2004). Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expression and Purification, 38(2), 248–257. doi:10.1016/j.pep.2004.08.006.

    Article  Google Scholar 

  • Nakazawa, H., Okada, K., Kobayashi, R., Kubota, T., Onodera, T., Ochiai, N., et al. (2008). Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Applied Microbiology and Biotechnology, 81(4), 681–689. doi:10.1007/s00253-008-1667-z.

    Article  Google Scholar 

  • Navarro, D., Couturier, M., da Silva, G., Berrin, J.-G., Rouau, X., Asther, M., et al. (2010). Automated assay for screening the enzymatic release of reducing sugars from micronized biomass. Microbial Cell Factories, 9(1), 58.

    Article  Google Scholar 

  • Necochea, R., Valderrama, B., Díaz-Sandoval, S., Folch-Mallol, J. L., Vázquez-Duhalt, R., & Iturriaga, G. (2005). Phylogenetic and biochemical characterisation of a recombinant laccase from Trametes versicolor. FEMS Microbiology Letters, 244(2), 235–241.

    Article  Google Scholar 

  • Nimz, H. (1974). Beech lignin—Proposal of a constitutional scheme. Angewandte Chemie International Edition in English, 13(5), 313–321. doi:10.1002/anie.197403131.

    Article  Google Scholar 

  • Nogawa, M., Goto, M., Okada, H., & Morikawa, Y. (2001). l-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Current Genetics, 38(6), 329–334. doi:10.1007/s002940000165.

    Article  Google Scholar 

  • Office of the biomass program, energy efficiency and renewable energy, U.S. DOE. (US DOE Biomass Multi-Year Program, 2008). http://www1.eere.energy.gov/biomass/pdfs/biomass_program_mypp.pdf.

  • Öhgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98(13), 2503–2510. doi:10.1016/j.biortech.2006.09.003.

    Article  Google Scholar 

  • Okeke, B. C., & Obi, S. K. C. (1994). Lignocellulose and sugar compositions of some agro-waste materials. Bioresource Technology, 47(3), 283–284. doi:10.1016/0960-8524(94)90192-9.

    Article  Google Scholar 

  • Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 33(5), 612–619. doi:10.1016/S0141-0229(03)00181-9.

    Article  Google Scholar 

  • Olsvik, E., & Kristiansen, B. (1994). Rheology of filamentous fermentations. Biotechnology Advances, 12(1), 1–39. doi:10.1016/0734-9750(94)90288-7.

    Article  Google Scholar 

  • O’Sullivan, A. (1997). Cellulose: The structure slowly unravels. Cellulose, 4(3), 173–207. doi:10.1023/a:1018431705579.

    Article  Google Scholar 

  • Ozaki, K., & Ito, S. (1991). Purification and properties of an acid endo-1,4-β-glucanase from Bacillus sp. KSM-330. Journal of General Microbiology, 137(1), 41–48. doi:10.1099/00221287-137-1-41.

    Article  Google Scholar 

  • Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresource Technology, 74(1), 17–24. doi:10.1016/S0960-8524(99)00160-1.

    Article  Google Scholar 

  • Pan, X., Xie, D., Yu, R. W., & Saddler, J. N. (2008). The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 101(1), 39–48. doi:10.1002/bit.21883.

    Article  Google Scholar 

  • Panagiotou, G., Christakopoulos, P., & Olsson, L. (2005). Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3—growth characteristics and metabolite profiling. Enzyme and Microbial Technology, 36(5–6), 693–699. doi:10.1016/j.enzmictec.2004.12.029.

    Article  Google Scholar 

  • Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial Crops and Products, 18(1), 37–45. doi:10.1016/S0926-6690(03)00018-9.

    Article  Google Scholar 

  • Panda, T., Bisaria, V. S., & Ghose, T. K. (1983). Studies on mixed fungal culture for cellulase and hemi-cellulase production part-1: Optimization of medium for the mixed culture of Trichoderma reesei D1-6 and Aspergillus wentii Pt 2804. Biotechnology Letters, 5(11), 767–772. doi:10.1007/bf01386499.

    Article  Google Scholar 

  • Park, Y., Kang, S., Lee, J., Hong, S., & Kim, S. (2002). Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Applied Microbiology and Biotechnology, 58(6), 761–766. doi:10.1007/s00253-002-0965-0.

    Article  Google Scholar 

  • Percival Zhang, Y. H., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24(5), 452–481. doi:10.1016/j.biotechadv.2006.03.003.

    Article  Google Scholar 

  • Persson, I., Tjerneld, F., & Hahn-Hägerdal, B. (1991). Fungal cellulolytic enzyme production: A review. Process Biochemistry, 26(2), 65–74. doi:10.1016/0032-9592(91)80019-L.

    Article  Google Scholar 

  • Peterson, R., & Nevalainen, H. (2012). Trichoderma reesei RUT-C30 – Thirty years of strain improvement. Microbiology, 158(1), 58–68. doi:10.1099/mic.0.054031-0.

    Article  Google Scholar 

  • Petersson, A., Thomsen, M. H., Hauggaard-Nielsen, H., & Thomsen, A.-B. (2007). Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass and Bioenergy, 31(11–12), 812–819. doi:10.1016/j.biombioe.2007.06.001.

    Article  Google Scholar 

  • Plapp, B. V. (1995). [4] Site-directed mutagenesis: A tool for studying enzyme catalysis. In L. P. Daniel (Ed.), Methods in enzymology (Vol. 249, pp. 91–119). London: Academic Press.

    Google Scholar 

  • Poutanen, K., & Puls, J. (1988). Characteristics of Trichoderma reesei β-xylosidase and its use in the hydrolysis of solubilized xylans. Applied Microbiology and Biotechnology, 28(4–5), 425–432. doi:10.1007/bf00268208.

    Article  Google Scholar 

  • Poutanen, K., Sundberg, M., Korte, H., & Puls, J. (1990). Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Applied Microbiology and Biotechnology, 33(5), 506–510. doi:10.1007/bf00172542.

    Article  Google Scholar 

  • Prasad, S., Singh, A., & Joshi, H. C. (2007). Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Conservation and Recycling, 50(1), 1–39. doi:10.1016/j.resconrec.2006.05.007.

    Article  Google Scholar 

  • Priest, F. G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews, 41(3), 711–753.

    Google Scholar 

  • Puchart, V. r., Katapodis, P., Biely, P., Kremnický, L. r., Christakopoulos, P., Vršanská, M., et al. (1999). Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme and Microbial Technology, 24(5–6), 355–361. doi:10.1016/S0141-0229(98)00132-X.

    Article  Google Scholar 

  • Punt, P. J., Seiboth, B., Weenink, X. O., Van Zeijl, C., Lenders, M., Konetschny, C., et al. (2001). Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth. Molecular Microbiology, 41(2), 513–525. doi:10.1046/j.1365-2958.2001.02541.x.

    Article  Google Scholar 

  • Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., & van den Hondel, C. (2002). Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology, 20(5), 200–206. doi:10.1016/S0167-7799(02)01933-9.

    Article  Google Scholar 

  • Purkarthofer, H., & Steiner, W. (1995). Induction of endo-β-xylanase in the fungus Thermomyces lanuginosus. Enzyme and Microbial Technology, 17(2), 114–118. doi:10.1016/0141-0229(94)00039-T.

    Article  Google Scholar 

  • Rahman, Z., Shida, Y., Furukawa, T., Suzuki, Y., Okada, H., Ogasawara, W., et al. (2009). Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular β-glucosidase I. Bioscience, Biotechnology, and Biochemistry, 73(5), 1083–1089.

    Article  Google Scholar 

  • Ramchuran, S. R., Nordberg Karlsson, E. N. K., Velut, S. V., de Maré, L. D. M., Hagander, P. H., & Holst, O. H. (2002). Production of heterologous thermostable glycoside hydrolases and the presence of host-cell proteases in substrate limited fed-batch cultures of Escherichia coli BL21(DE3). Applied Microbiology and Biotechnology, 60(4), 408–416. doi:10.1007/s00253-002-1132-3.

  • Rana, D., Rana, V., & Ahring, B. K. (2012). Producing high sugar concentrations from loblolly pine using wet explosion pretreatment. Bioresource Technology, 121, 61–67. doi:10.1016/j.biortech.2012.06.062.

    Article  Google Scholar 

  • Robson, L. M., & Chambliss, G. H. (1984). Characterization of the cellulolytic activity of a Bacillus isolate. Applied and Environmental Microbiology, 47(5), 1039–1046.

    Google Scholar 

  • Rowell, R. M. (1992). Opportunities for lignocellulosic materials and composites. In Emerging technologies for materials and chemicals from biomass (Vol. 476, pp. 12–27). Washington, DC: American Chemical Society.

    Google Scholar 

  • Rowell, R. M., Schultz, T. P., & Narayan, R. (1992). Emerging technologies for materials and chemicals from biomass, copyright, ACS symposium series, foreword. In M. J. Comstock (Ed.), Emerging technologies for materials and chemicals from biomass (Vol. 476, pp. i–iv). Washington, DC: American Chemical Society.

    Google Scholar 

  • Royer, J. C., Moyer, D. L., Reiwitch, S. G., Madden, M. S., Jensen, E. B., Brown, S. H., et al. (1995). Fusarium graminearum A 3/5 as a novel host for heterologous protein production. Nature Biotechnology, 13(12), 1479–1483. doi:10.1038/nbt1295-1479.

    Article  Google Scholar 

  • Rubio, M., Tortosa, J. F., Quesada, J., & Gómez, D. (1998). Fractionation of lignocellulosics. Solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium. Biomass and Bioenergy, 15(6), 483–491. doi:10.1016/S0961-9534(98)00054-3.

    Article  Google Scholar 

  • Ruiz-Dueñas, F. J., Camarero, S., Pérez-Boada, M., Martínez, M. J., & Martínez, A. T. (2001). A new versatile peroxidase from Pleurotus. Biochemical Society Transactions, 29(Pt 2), 116–122.

    Article  Google Scholar 

  • Ruiz-Dueñas, F. J., Martínez, M. J., & Martínez, A. T. (1999). Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Molecular Microbiology, 31(1), 223–235. doi:10.1046/j.1365-2958.1999.01164.x.

    Article  Google Scholar 

  • Ryu, D. D. Y., & Mandels, M. (1980). Cellulases: Biosynthesis and applications. Enzyme and Microbial Technology, 2(2), 91–102. doi:10.1016/0141-0229(80)90063-0.

    Article  Google Scholar 

  • Sachslehner, A., Nidetzky, B., Kulbe, K. D., & Haltrich, D. (1998). Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Applied and Environmental Microbiology, 64(2), 594–600.

    Google Scholar 

  • Saha, B. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30(5), 279–291. doi:10.1007/s10295-003-0049-x.

    Article  Google Scholar 

  • Salony, T., Mishra, S., & Bisaria, V. S. (2006). Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Applied Microbiology and Biotechnology, 71(5), 646–653. doi:10.1007/s00253-005-0206-4.

    Article  Google Scholar 

  • Samayam, I. P., & Schall, C. A. (2010). Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresource Technology, 101(10), 3561–3566. doi:10.1016/j.biortech.2009.12.066.

    Article  Google Scholar 

  • Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. doi:10.1016/j.biotechadv.2008.11.001.

    Article  Google Scholar 

  • Sandgren, M., Ståhlberg, J., & Mitchinson, C. (2005). Structural and biochemical studies of GH family 12 cellulases: Improved thermal stability, and ligand complexes. Progress in Biophysics and Molecular Biology, 89(3), 246–291. doi:10.1016/j.pbiomolbio.2004.11.002.

    Article  Google Scholar 

  • Saulnier, L., & Thibault, J.-F. (1999). Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture, 79(3), 396–402. doi:10.1002/(sici)1097-0010(19990301)79:3<396::aid-jsfa262>3.0.co;2-b.

    Article  Google Scholar 

  • Schafner, D. W., & Toledo, R. T. (1992). Cellulase production in continuous culture by Trichoderma reesei on xylose-based media. Biotechnology and Bioengineering, 39(8), 865–869. doi:10.1002/bit.260390808.

    Article  Google Scholar 

  • Schwarz, W. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology, 56(5–6), 634–649. doi:10.1007/s002530100710.

    Article  Google Scholar 

  • Shah, A., & Madamwar, D. (2005). Xylanase production under solid-state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India. World Journal of Microbiology and Biotechnology, 21(3), 233–243. doi:10.1007/s11274-004-3622-1.

    Article  Google Scholar 

  • Shallom, D., & Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology, 6(3), 219–228. doi:10.1016/S1369-5274(03)00056-0.

    Article  Google Scholar 

  • Shleev, S., Nikitina, O., Christenson, A., Reimann, C. T., Yaropolov, A. I., Ruzgas, T., et al. (2007). Characterization of two new multiforms of Trametes pubescens laccase. Bioorganic Chemistry, 35(1), 35–49. doi:10.1016/j.bioorg.2006.08.001.

    Article  Google Scholar 

  • Sigoillot, J.-C., Berrin, J.-G., Bey, M., Lesage-Meessen, L., Levasseur, A., Lomascolo, A., et al. (2012). Fungal strategies for lignin degradation. In J. Lise & L. Catherine (Eds.), Advances in botanical research (Vol. 61, pp. 263–308). London: Academic Press.

    Google Scholar 

  • Singh, D., & Chen, S. (2008). The white-rot fungus Phanerochaete chrysosporium: Conditions for the production of lignin-degrading enzymes. Applied Microbiology and Biotechnology, 81(3), 399–417. doi:10.1007/s00253-008-1706-9.

    Article  Google Scholar 

  • Singh, S., Madlala, A. M., & Prior, B. A. (2003). Thermomyces lanuginosus: Properties of strains and their hemicellulases. FEMS Microbiology Reviews, 27(1), 3–16. doi:10.1016/s0168-6445(03)00018-4.

    Article  Google Scholar 

  • Singh, R., Varma, A. J., Seeta Laxman, R., & Rao, M. (2009). Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: Comparison with commercial cellulase. Bioresource Technology, 100(24), 6679–6681. doi:10.1016/j.biortech.2009.07.060.

    Article  Google Scholar 

  • Sinner, M., Puls, J., & Dietrichs, H. (1979). Carbohydrate composition of nut shells and some other agricultural residues. Starch - Stärke, 31(8), 267–269. doi:10.1002/star.19790310807.

    Article  Google Scholar 

  • Solov’eva, I. V., Okunev, O. N., Vel’kov, V. V., Koshelev, A. V., Bubnova, T. V., Kondrat’eva, E. G., et al. (2005). The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases. Microbiology, 74(2), 141–146. doi:10.1007/s11021-005-0043-6.

    Article  Google Scholar 

  • Sørensen, H. R., Meyer, A. S., & Pedersen, S. (2003). Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between α-L-arabinofuranosidases, endo-1,4-β-xylanases, and β-xylosidase activities. Biotechnology and Bioengineering, 81(6), 726–731. doi:10.1002/bit.10519.

    Article  Google Scholar 

  • Sørensen, H. R., Pedersen, S., Jørgensen, C. T., & Meyer, A. S. (2007). Enzymatic hydrolysis of wheat arabinoxylan by a recombinant “minimal” enzyme cocktail containing β-xylosidase and novel endo-1,4-β-xylanase and α-l-arabinofuranosidase activities. Biotechnology Progress, 23(1), 100–107. doi:10.1021/bp0601701.

    Article  Google Scholar 

  • Sørensen, A., Teller, P., Lübeck, P., & Ahring, B. (2011). Onsite enzyme production during bioethanol production from biomass: Screening for suitable fungal strains. Applied Biochemistry and Biotechnology, 164(7), 1058–1070. doi:10.1007/s12010-011-9194-2.

    Article  Google Scholar 

  • Stewart, D., Azzini, A., Hall, A. T., & Morrison, I. M. (1997). Sisal fibres and their constituent non-cellulosic polymers. Industrial Crops and Products, 6(1), 17–26. doi:10.1016/S0926-6690(96)00172-0.

    Article  Google Scholar 

  • Stockton, B. C., Mitchell, D. J., Grohmann, K., & Himmel, M. E. (1991). Optimumβ-D-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnology Letters, 13(1), 57–62. doi:10.1007/bf01033518.

    Article  Google Scholar 

  • Stricker, A., Mach, R., & Graaff, L. (2008). Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotechnology, 78(2), 211–220. doi:10.1007/s00253-007-1322-0.

    Article  Google Scholar 

  • Su, X., Schmitz, G., Zhang, M., Mackie, R. I., & Cann, I. K. O. (2012). Heterologous gene expression in filamentous fungi. In M. G. Geoffrey & S. Sima (Eds.), Advances in applied microbiology (Vol. 81, pp. 1–61). London: Academic Press.

    Google Scholar 

  • Sulistyaningdyah, W. T., Ogawa, J., Tanaka, H., Maeda, C., & Shimizu, S. (2004). Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase. FEMS Microbiology Letters, 230(2), 209–214. doi:10.1016/S0378-1097(03)00892-9.

    Article  Google Scholar 

  • Sunna, A., & Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17(1), 39–67. doi:10.3109/07388559709146606.

    Article  Google Scholar 

  • Suurnäkki, A., Tenkanen, M., Buchert, J., & Viikari, L. (1997). Hemicellulases in the bleaching of chemical pulps. In K. E. L. Eriksson, W. Babel, H. W. Blanch, C. L. Cooney, S. O. Enfors, A. Fiechter, A. M. Klibanov, B. Mattiasson, S. B. Primrose, H. J. Rehm, P. L. Rogers, H. Sahm, K. Schügerl, G. T. Tsao, K. Venkat, J. Villadsen, U. Stockar, & C. Wandrey (Eds.), Biotechnology in the pulp and paper industry (Vol. 57, pp. 261–287). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Takao, M., Akiyama, K., & Sakai, T. (2002). Purification and characterization of thermostable endo-1,5-α-l-arabinase from a strain of Bacillus thermodenitrificans. Applied and Environmental Microbiology, 68(4), 1639–1646. doi:10.1128/aem.68.4.1639-1646.2002.

    Article  Google Scholar 

  • Takashima, S., Iikura, H., Nakamura, A., Hidaka, M., Masaki, H., & Uozumi, T. (1998). Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. Journal of Biotechnology, 65(2–3), 163–171. doi:10.1016/S0168-1656(98)00084-4.

    Article  Google Scholar 

  • Takashima, S., Nakamura, A., Hidaka, M., Masaki, H., & Uozumi, T. (1996). Cloning, sequencing, and expression of the cellulase genes of Humicola grisea var. thermoidea. Journal of Biotechnology, 50(2–3), 137–147. doi:10.1016/0168-1656(96)01555-6.

    Article  Google Scholar 

  • Tanaka, H., Itakura, S., & Enoki, A. (1999). Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. Journal of Biotechnology, 75(1), 57–70. doi:10.1016/S0168-1656(99)00138-8.

    Article  Google Scholar 

  • Tatsumi, H., Katano, H., & Ikeda, T. (2006). Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Analytical Biochemistry, 357(2), 257–261. doi:10.1016/j.ab.2006.07.019.

    Article  Google Scholar 

  • ten Have, R., & Teunissen, P. J. M. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical Reviews, 101(11), 3397–3414. doi:10.1021/cr000115l.

    Article  Google Scholar 

  • Thayer, D. W., & David, C. A. (1978). Growth of “seeded” cellulolytic enrichment cultures on mesquite wood. Applied and Environmental Microbiology, 36(2), 291–296.

    Google Scholar 

  • Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology, 140(1), 19–26. doi:10.1099/13500872-140-1-19.

    Article  Google Scholar 

  • Ting, C. L., Makarov, D. E., & Wang, Z.-G. (2009). A kinetic model for the enzymatic action of cellulase. The Journal of Physical Chemistry B, 113(14), 4970–4977. doi:10.1021/jp810625k.

    Article  Google Scholar 

  • Trostle, R. (2008). Global agricultural supply and demand: Factors contributing to the recent increase in food commodity prices.

    Google Scholar 

  • Vaaje-Kolstad, G., Westereng, B., Horn, S. J., Liu, Z., Zhai, H., Sørlie, M., et al. (2010). An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science, 330(6001), 219–222. doi:10.1126/science.1192231.

    Article  Google Scholar 

  • Valášková, V., & Baldrian, P. (2006). Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Research in Microbiology, 157(2), 119–124. doi:10.1016/j.resmic.2005.06.004.

    Article  Google Scholar 

  • Vandamme, E. J. (2001). Recent advances in carbohydrate bioengineering. Edited by HJ Gilbert, GJ Davies, B Henrissat and B Svensson, Royal Society of Chemistry, Cambridge, 1999, 312 pp, price UK $ 69.50. ISBN 0 85404 774 3. Journal of Chemical Technology & Biotechnology, 76(1), 106–107. doi:10.1002/1097-4660(200101)76:1<106::aid-jctb351>3.0.co;2-h.

    Article  Google Scholar 

  • Várnai, A., Siika-aho, M., & Viikari, L. (2010). Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme and Microbial Technology, 46(3–4), 185–193. doi:10.1016/j.enzmictec.2009.12.013.

    Article  Google Scholar 

  • Vázquez, M., Oliva, M., Téllez-Luis, S. J., & Ramírez, J. A. (2007). Hydrolysis of sorghum straw using phosphoric acid: Evaluation of furfural production. Bioresource Technology, 98(16), 3053–3060. doi:10.1016/j.biortech.2006.10.017.

    Article  Google Scholar 

  • Verardi, A., Bari, I., Ricca, E., & Calabro, V. (2012). Hydrolysis of lignocellulosic biomass: Current status of processes and technologies and future perspectives. In M. A. P. Lima, A. P. P. Natalense (Ed.), Bioethanol.

    Google Scholar 

  • Viikari, L., Alapuranen, M., Puranen, T., Vehmaanperä, J., & Siika-aho, M. (2007). Thermostable enzymes in lignocellulose hydrolysis. Advances in Biochemical Engineering and Biotechnology, 108, 121–145.

    Google Scholar 

  • Viikari, L., Tenkanen, M., Buchert, J., Ratto, M., Bailey, M., Siika-Aho, M., et al. (1993). Hemicellulases for industrial applications. In J. N. Saddler (Ed.), Bioconversion of forest and agricultural plant residues (pp. 132–182). Wallingford: CAB International.

    Google Scholar 

  • Viikari, L., Vehmaanperä, J., & Koivula, A. (2012). Lignocellulosic ethanol: From science to industry. Biomass and Bioenergy, 46, 13–24. doi:10.1016/j.biombioe.2012.05.008.

    Article  Google Scholar 

  • Vlaev, S. D., Djejeva, G., Raykovska, V., & Schügerl, K. (1997). Cellulase production by Trichoderma sp. grown on corn fibre substrate. Process Biochemistry, 32(7), 561–565. doi:10.1016/S0032-9592(97)00021-6.

    Article  Google Scholar 

  • Volynets, B., & Dahman, Y. (2011). Assessment of pretreatments and enzymatic hydrolysis of wheat straw as a sugar source for bioprocess industry. International Journal of Energy and Environment, 2(3), 427–446.

    Google Scholar 

  • Wang, L., Yan, W., Chen, J., Huang, F., & Gao, P. (2008). Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation. Science in China Series C: Life Sciences, 51(3), 214–221. doi:10.1007/s11427-008-0033-9.

    Article  Google Scholar 

  • Wang, W., Yuan, T., Cui, B., & Dai, Y. (2013). Investigating lignin and hemicellulose in white rot fungus-pretreated wood that affect enzymatic hydrolysis. Bioresource Technology, 134, 381–385. doi:10.1016/j.biortech.2013.02.042.

    Article  Google Scholar 

  • Watanabe, H., & Tokuda, G. (2010). Cellulolytic systems in insects. Annual Review of Entomology, 55(1), 609–632. doi:10.1146/annurev-ento-112408-085319.

    Article  Google Scholar 

  • Welinder, K. G. (1992). Superfamily of plant, fungal and bacterial peroxidases. Current Opinion in Structural Biology, 2(3), 388–393. doi:10.1016/0959-440X(92)90230-5.

    Article  Google Scholar 

  • Wen, Z., Liao, W., & Chen, S. (2005). Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochemistry, 40(9), 3087–3094. doi:10.1016/j.procbio.2005.03.044.

    Article  Google Scholar 

  • Wilson, D. B. (2008). Three microbial strategies for plant cell wall degradation. Annals of the New York Academy of Sciences, 1125(1), 289–297. doi:10.1196/annals.1419.026.

    Article  Google Scholar 

  • Xiao, Y., Tu, X., Wang, J., Zhang, M., Cheng, Q., Zeng, W., et al. (2003). Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Applied Microbiology and Biotechnology, 60(6), 700–707. doi:10.1007/s00253-002-1169-3.

    Article  Google Scholar 

  • Xie, G., Bruce, D. C., Challacombe, J. F., Chertkov, O., Detter, J. C., Gilna, P., et al. (2007). Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Applied and Environmental Microbiology, 73(11), 3536–3546. doi:10.1128/aem.00225-07.

    Article  Google Scholar 

  • Xiong, H., Turunen, O., Pastinen, O., Leisola, M., & Weymarn, N. (2004). Improved xylanase production by Trichoderma reesei grown on l-arabinose and lactose or d-glucose mixtures. Applied Microbiology and Biotechnology, 64(3), 353–358. doi:10.1007/s00253-003-1548-4.

    Article  Google Scholar 

  • Xiong, H., von Weymarn, N., Turunen, O., Leisola, M., & Pastinen, O. (2005). Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates. Bioresource Technology, 96(7), 753–759. doi:10.1016/j.biortech.2004.08.007.

    Article  Google Scholar 

  • Xu, C., Ma, F., & Zhang, X. (2009). Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. Journal of Bioscience and Bioengineering, 108(5), 372–375. doi:10.1016/j.jbiosc.2009.04.023.

    Article  Google Scholar 

  • Xu, H., Scott, G. M., Jiang, F., & Kelly, C. (2010). Recombinant manganese peroxidase (rMnP) from Pichia pastoris. Part 1: Kraft pulp delignification. Holzforschung, 64, 137–143.

    Google Scholar 

  • Xu, Q., Singh, A., & Himmel, M. E. (2009). Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Current Opinion in Biotechnology, 20(3), 364–371. doi:10.1016/j.copbio.2009.05.006.

    Article  Google Scholar 

  • Yamanobe, T., Mitsuishi, Y., & Takasaki, Y. (1987). Isolation of a cellulolytic enzyme producing microorganism, culture conditions and some properties of the enzymes (microbiology & fermentation industry). Agricultural and Biological Chemistry, 51(1), 65–74.

    Google Scholar 

  • Yang, Y. H., Wang, B. C., Wang, Q. H., Xiang, L. J., & Duan, C. R. (2004). Research on solid-state fermentation on rice chaff with a microbial consortium. Colloids and Surfaces B: Biointerfaces, 34(1), 1–6. doi:10.1016/j.colsurfb.2003.10.009.

    Article  Google Scholar 

  • Yoon, J. J., Cha, C. J., Kim, Y. S., Son, D. W., & Kim, Y. K. (2007). The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. Journal of Microbiology and Biotechnology, 17(5), 800–805.

    Google Scholar 

  • Yoshida, H. (1883). LXIII.-Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. Journal of the Chemical Society, Transactions, 43, 472–486. doi:10.1039/ct8834300472.

    Article  Google Scholar 

  • Zhang, L., Liu, Y., Niu, X., Liu, Y., & Liao, W. (2012). Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass and Bioenergy, 37, 16–24. doi:10.1016/j.biombioe.2011.12.044.

    Article  Google Scholar 

  • Zhou, J., Wang, Y.-H., Chu, J., Zhuang, Y.-P., Zhang, S.-L., & Yin, P. (2008). Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100–14. Bioresource Technology, 99(15), 6826–6833. doi:10.1016/j.biortech.2008.01.077.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Rana, V., Rana, D. (2017). Role of Microorganisms in Lignocellulosic Biodegradation. In: Renewable Biofuels. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47379-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47379-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47378-9

  • Online ISBN: 978-3-319-47379-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics