Development of Immune System Organs

  • George A. ParkerEmail author
Part of the Molecular and Integrative Toxicology book series (MOLECUL)


In addition to the direct, indirect, nutrition- and stress-related histologic alterations encountered in immune system organs of adult animals in toxicology studies, in juvenile toxicology studies the pathologist and toxicologist must also be concerned with the influence of normal postnatal development on the histologic appearance and functional attributes of immune system tissues. In addition to direct age-related differences in histomorphology, the postnatal development of the immune system is partially controlled by environmental factors, thus test article-related influences on non-immune organs or functions, e.g., the microbiome of the gastrointestinal tract, may have secondary effects on immune system organs. It is important that pathologists and toxicologists have a thorough understanding of the normal embryological and postnatal development of immune system organs in order to prevent misinterpretation of these normal changes as xenobiotic-associated. This chapter is focused on histomorphological rather than physiological alterations, though the intent certainly is not to dismiss the importance of traditional immunological assays in the detection of xenobiotic-associated influences. The laboratory rat is commonly used in nonclinical toxicology studies, thus the rat is used as the major example of the processes that occur during the postnatal development of immune system organs. An attempt is made to provide cursory information relating developmental and homeostatic changes in the rat as compared to those seen in other commonly used lab animals and humans, but a thorough presentation of these changes in humans and all animal species is beyond the practical scope of this Chapter.


Embryology Postnatal development Embryogenesis Organogenesis Histology Rats Immune system 



The author wishes to acknowledge the contributions of Cynthia L. Swanson, M. S. in preparing the figures for the manuscript.


  1. Aboussaouira T, Moustafa Y, Idelman S (1988) Image analysis of cell proliferation in rat thymus throughout development. Thymus 12(3):167–186PubMedGoogle Scholar
  2. Adachi S, Yoshida H, Kataoka H, Nishikawa S (1997) Three distinctive steps in Peyer’s patch formation of murine embryo. Int Immunol 9(4):507–514PubMedCrossRefGoogle Scholar
  3. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6(3):205–217. doi: 10.1038/nri1786 PubMedCrossRefGoogle Scholar
  4. Alves NL, Takahama Y, Ohigashi I, Ribeiro AR, Baik S, Anderson G, Jenkinson WE (2014) Serial progression of cortical and medullary thymic epithelial microenvironments. Eur J Immunol 44(1):16–22. doi: 10.1002/eji.201344110 PubMedCrossRefGoogle Scholar
  5. Anderson G, Jenkinson EJ (2001) Lymphostromal interactions in thymic development and function. Nat Rev Immunol 1(1):31–40PubMedCrossRefGoogle Scholar
  6. Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33(6):256–263. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  7. Arno J (1980) Atlas of lymph node pathology. Lippincott, Philadelphia, PACrossRefGoogle Scholar
  8. Barreau F, Madre C, Meinzer U, Berrebi D, Dussaillant M, Merlin F, Eckmann L, Karin M, Sterkers G, Bonacorsi S, Lesuffleur T, Hugot JP (2010) Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer’s patches. Gut 59(2):207–217. doi: 10.1136/gut.2008.171546 PubMedCrossRefGoogle Scholar
  9. Barreau F, Meinzer U, Chareyre F, Berrebi D, Niwa-Kawakita M, Dussaillant M, Foligne B, Ollendorff V, Heyman M, Bonacorsi S, Lesuffleur T, Sterkers G, Giovannini M, Hugot JP (2007) CARD15/NOD2 is required for Peyer’s patches homeostasis in mice. PLoS One 2(6):e523. doi: 10.1371/journal.pone.0000523 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beagley KW, Elson CO (1992) Cells and cytokines in mucosal immunity and inflammation. Gastroenterol Clin North Am 21(2):347–366PubMedGoogle Scholar
  11. Benezech C, Mader E, Desanti G, Khan M, Nakamura K, White A, Ware CF, Anderson G, Caamano JH (2012) Lymphotoxin-beta receptor signaling through NF-kappaB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells. Immunity 37(4):721–734. doi: 10.1016/j.immuni.2012.06.010 PubMedCrossRefGoogle Scholar
  12. Benezech C, Nayar S, Finney BA, Withers DR, Lowe K, Desanti GE, Marriott CL, Watson SP, Caamano JH, Buckley CD, Barone F (2014) CLEC-2 is required for development and maintenance of lymph nodes. Blood 123(20):3200–3207. doi: 10.1182/blood-2013-03-489286 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Benz C, Bleul CC (2005) A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J Exp Med 202:21–31PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441(7096):992–996. doi: 10.1038/nature04850 PubMedCrossRefGoogle Scholar
  15. Bockman DE, Kirby ML (1985) Neural crest interactions in the development of the immune system. J Immunol 135(2 Suppl):766s–768sPubMedGoogle Scholar
  16. Boldizsar F, Palinkas L, Czompoly T, Bartis D, Nemeth P, Berki T (2006) Low glucocorticoid receptor (GR), high Dig2 and low Bcl-2 expression in double positive thymocytes of BALB/c mice indicates their endogenous glucocorticoid hormone exposure. Immunobiology 211(10):785–796. doi: 10.1016/j.imbio.2006.06.005 PubMedCrossRefGoogle Scholar
  17. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG, Eberl G (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510. doi: 10.1038/nature07450 PubMedCrossRefGoogle Scholar
  18. Braegger CP, Spencer J, MacDonald TT (1992) Ontogenetic aspects of the intestinal immune system in man. Int J clin Lab Res 22(1):1–4PubMedCrossRefGoogle Scholar
  19. Brandtzaeg P, Kiyono H, Pabst R, Russell MW (2008) Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol 1(1):31–37. doi: 10.1038/mi.2007.9 PubMedCrossRefGoogle Scholar
  20. Brelinska R, Ostalska D, Paczkowska A, Jaroszewski J (2001) Histogenesis of the rat thymic medulla during first stages of development. Folia Histochem Cytobiol/Pol Acad Sci Pol Histochem Cytochem Soc 39(2):197–198Google Scholar
  21. Burns-Naas LA, Hastings KL, Ladics GS, Makris SL, Parker GA, Holsapple MP (2008) What’s so special about the developing immune system? Int J Toxicol 27(2):223–254PubMedCrossRefGoogle Scholar
  22. Capri M, Quaglino D, Verzella G, Monti D, Bonafe M, Cossarizza A, Troiano L, Zecca L, Pasquali-Ronchetti I, Franceschi C (2000) A cytofluorimetric study of T lymphocyte subsets in rat lymphoid tissues (thymus, lymph nodes) and peripheral blood: a continuous remodelling during the first year of life. Exp Gerontol 35(5):613–625PubMedCrossRefGoogle Scholar
  23. Carragher DM, Rangel-Moreno J, Randall TD (2008) Ectopic lymphoid tissues and local immunity. Semin Immunol 20(1):26–42. doi: 10.1016/j.smim.2007.12.004 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen D, Hoshi H, Tanaka K, Murakami G (1995) Postnatal development of lymphoid follicles in rat Peyer’s patches, with special reference to increased follicle number. Arch Histo Cytol 58(3):335–343CrossRefGoogle Scholar
  25. Cline MJ, Moore MA (1972) Embryonic origin of the mouse macrophage. Blood 39(6):842–849PubMedGoogle Scholar
  26. Cordier AC, Haumont SM (1980) Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and nude mice. Am J Anat 157(3):227–263. doi: 10.1002/aja.1001570303 PubMedCrossRefGoogle Scholar
  27. Cornes JS (1965) Number, size, and distribution of Peyer’s patches in the human small intestine: Part I the development of Peyer’s patches. Gut 6(3):225–229PubMedPubMedCentralCrossRefGoogle Scholar
  28. Crouse DA, Perry GA, Murphy BO, Sharp JG (1989) Characteristics of submucosal lymphoid tissue located in the proximal colon of the rat. J Anat 162:53–65PubMedPubMedCentralGoogle Scholar
  29. Csencsits KL, Jutila MA, Pascual DW (1999) Nasal-associated lymphoid tissue: phenotypic and functional evidence for the primary role of peripheral node addressin in naive lymphocyte adhesion to high endothelial venules in a mucosal site. J Immunol 163(3):1382–1389PubMedGoogle Scholar
  30. Cumano A, Dieterlen-Lievre F, Godin I (1996) Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86(6):907–916PubMedCrossRefGoogle Scholar
  31. Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL, Fibbe WE, Cornelissen JJ, Spits H (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 10(1):66–74. doi: 10.1038/ni.1668 PubMedCrossRefGoogle Scholar
  32. Cupedo T, Jansen W, Kraal G, Mebius RE (2004a) Induction of secondary and tertiary lymphoid structures in the skin. Immunity 21(5):655–667. doi: 10.1016/j.immuni.2004.09.006 PubMedCrossRefGoogle Scholar
  33. Cupedo T, Mebius RE (2005) Cellular interactions in lymph node development. J Immunol 174(1):21–25PubMedCrossRefGoogle Scholar
  34. Cupedo T, Vondenhoff MF, Heeregrave EJ, De Weerd AE, Jansen W, Jackson DG, Kraal G, Mebius RE (2004b) Presumptive lymph node organizers are differentially represented in developing mesenteric and peripheral nodes. J Immunol 173(5):2968–2975PubMedCrossRefGoogle Scholar
  35. de Bruijn MF, Speck NA, Peeters MC, Dzierzak E (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 19(11):2465–2474. doi: 10.1093/emboj/19.11.2465 PubMedPubMedCentralCrossRefGoogle Scholar
  36. De Togni P, Goellner J, Ruddle NH, Streeter PR, Andrea F, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J, Russell JH, Karr R, Chaplin DD (2014) Pillars article: abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. J Immunol 192(5):2010–2014Google Scholar
  37. Diaz-Jouanen E, Williams RC Jr (1974) T and B lymphocytes in human colostrum. Clin Immunol Immunopathol 3(2):248–255PubMedCrossRefGoogle Scholar
  38. Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7(4):344–353. doi: 10.1038/ni1330 PubMedCrossRefGoogle Scholar
  39. Eberl G, Littman DR (2004) Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. Science 305(5681):248–251. doi: 10.1126/science.1096472 PubMedCrossRefGoogle Scholar
  40. Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR (2004) An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5(1):64–73. doi: 10.1038/ni1022 PubMedCrossRefGoogle Scholar
  41. Eikelenboom P, Nassy JJ, Post J, Versteeg JC, Langevoort HL (1978) The histogenesis of lymph nodes in rat and rabbit. Anat Rec 190(2):201–214. doi: 10.1002/ar.1091900204 PubMedCrossRefGoogle Scholar
  42. Ema H, Nakauchi H (2000) Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95(7):2284–2288PubMedGoogle Scholar
  43. Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, Benecke A, Van Maele L, Sirard JC, Mueller AJ, Heikenwalder M, Macpherson AJ, Strugnell R, von Mering C, Hardt WD (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6(9):e1001097. doi: 10.1371/journal.ppat.1001097 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J (2002) CD4+CD3- cells induce Peyer’s patch development: role of alpha4beta1 integrin activation by CXCR4. Immunity 17(3):363–373PubMedCrossRefGoogle Scholar
  45. Fontaine-Perus JC, Calman FM, Kaplan C, Le Douarin NM (1981) Seeding of the 10-day mouse embryo thymic rudiment by lymphocyte precursors in vitro. J Immunol 126(6):2310–2316PubMedGoogle Scholar
  46. Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, Kinoshita N, Terawaki S, Shikina T, Yamamoto M, Kurono Y, Kiyono H (2002) Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR, and NIK signaling pathways but requires the Id2 gene and CD3(-)CD4(+)CD45(+) cells. Immunity 17(1):31–40PubMedCrossRefGoogle Scholar
  47. Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K (1998) The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9(1):59–70PubMedCrossRefGoogle Scholar
  48. Graziano M, St-Pierre Y, Beauchemin C, Desrosiers M, Potworowski EF (1998) The fate of thymocytes labeled in vivo with CFSE. Exp Cell Res 240(1):75–84. doi: 10.1006/excr.1997.3900 PubMedCrossRefGoogle Scholar
  49. Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, Kaminogawa S, Takahashi-Iwanaga H, Iwanaga T, Kiyono H, Yamamoto H, Ishikawa H (2002) Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168(1):57–64PubMedCrossRefGoogle Scholar
  50. Hameleers DM, van der Ende M, Biewenga J, Sminia T (1989) An immunohistochemical study on the postnatal development of rat nasal-associated lymphoid tissue (NALT). Cell Tissue Res 256(2):431–438PubMedCrossRefGoogle Scholar
  51. Hardy RR (2013) B-lymphocyte development and biology. In: Paul WE (ed) Fundamental immunology. Lippincott Williams & Wilkins, Philadelphia, PA, pp 215–245Google Scholar
  52. Harland J (1940) Early histogenesis of the thymus in the white rat. Anat Rec 77:247–271CrossRefGoogle Scholar
  53. Harmsen A, Kusser K, Hartson L, Tighe M, Sunshine MJ, Sedgwick JD, Choi Y, Littman DR, Randall TD (2002) Cutting edge: organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-alpha (LT alpha) and retinoic acid receptor-related orphan receptor-gamma, but the organization of NALT is LT alpha dependent. J Immunol 168(3):986–990PubMedCrossRefGoogle Scholar
  54. Harrison DE, Astle CM, DeLaittre JA (1979) Processing by the thymus is not required for cells that cure and populate W/WV recipients. Blood 54(5):1152–1157PubMedGoogle Scholar
  55. Hashi H, Yoshida H, Honda K, Fraser S, Kubo H, Awane M, Takabayashi A, Nakano H, Yamaoka Y, Nishikawa S (2001) Compartmentalization of Peyer’s patch anlagen before lymphocyte entry. J Immunol 166(6):3702–3709PubMedCrossRefGoogle Scholar
  56. Henning SJ (1981) Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol 241(3):G199–G214PubMedGoogle Scholar
  57. Hong R (1991) The DiGeorge anomaly. Immunodefic Rev 3(1):1–14PubMedGoogle Scholar
  58. Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10(3):159–169. doi: 10.1038/nri2710 PubMedCrossRefGoogle Scholar
  59. Kaufman MH, Bard JBL (1999) The anatomical basis of mouse development. Elsevier-Academic Press, San Diego, CAGoogle Scholar
  60. Kawamoto H, Ikawa T, Ohmura K, Fujimoto S, Katsura Y (2000) T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 12(4):441–450PubMedCrossRefGoogle Scholar
  61. Kincade PW (1981) Formation of B lymphocytes in fetal and adult life. Adv Immunol 31:177–245PubMedCrossRefGoogle Scholar
  62. Kiyono H, Fukuyama S (2004) NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4(9):699–710PubMedCrossRefGoogle Scholar
  63. Kodama R, Okazaki T, Sato T, Iwashige S, Tanigawa Y, Fujishima J, Moriyama A, Yamashita N, Sasaki Y, Yoshikawa T, Kamimura Y, Maeda H (2012) Age difference in morphology and immunohistology in the thymus and spleen in Crl:CD (SD) rats. J Toxicol Pathol 25(1):55–61PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kuper CF, Ruehl-Fehlert C, Elmore SA, Parker GA (2013) Immune System. In: Haschek WM, Rousseaux CG, Wallig MA (eds) Haschek and Rousseaux’s handbook of toxicologic pathology, vol 2. Elsevier, Amsterdam, pp 1795–1862CrossRefGoogle Scholar
  65. Kyriazis AA, Esterly JR (1971) Fetal and neonatal development of lymphoid tissues. Arch Pathol 91(5):444–451PubMedGoogle Scholar
  66. Landreth KS (1993) B lymphocyte development as a developmental process. In: Cooper EL, Nisbet-Brown E (eds) Developmental immunology. Oxford University Press, New York, pp 238–273Google Scholar
  67. Le Douarin NM, Dieterlen-Lievre F, Oliver PD (1984) Ontogeny of primary lymphoid organs and lymphoid stem cells. Am J Anat 170(3):261–299. doi: 10.1002/aja.1001700305 PubMedCrossRefGoogle Scholar
  68. Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J, Chervonsky AV, Fu YX (2006) Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity 25(3):499–509. doi: 10.1016/j.immuni.2006.06.016 PubMedCrossRefGoogle Scholar
  69. Lipp M, Muller G (2004) Lymphoid organogenesis: getting the green light from RORgamma(t). Nat Immunol 5(1):12–14. doi: 10.1038/ni0104-12 PubMedCrossRefGoogle Scholar
  70. Liu CP, Auerbach R (1991) Ontogeny of murine T cells: thymus-regulated development of T cell receptor-bearing cells derived from embryonic yolk sac. Eur J Immunol 21(8):1849–1854. doi: 10.1002/eji.1830210811 PubMedCrossRefGoogle Scholar
  71. Losco P, Harlemen H (1992) Normal development, growth and aging of the lymph node. In: Mohr U, Dungworth DL, Capen CC (eds) Pathobiology of the aging rat, vol 1. ILSI, Washington, DC, pp 49–73Google Scholar
  72. Lugering A, Ross M, Sieker M, Heidemann J, Williams IR, Domschke W, Kucharzik T (2010) CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin Exp Immunol 160(3):440–449. doi: 10.1111/j.1365-2249.2010.04103.x PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lyscom N, Brueton MJ (1983) The development of intraepithelial and Peyer’s patch lymphocyte sub-types in the small intestine of newborn rats. Clin Exp Immunol 54(1):158–162PubMedPubMedCentralGoogle Scholar
  74. McDonald KG, McDonough JS, Dieckgraefe BK, Newberry RD (2010) Dendritic cells produce CXCL13 and participate in the development of murine small intestine lymphoid tissues. Am J Pathol 176(5):2367–2377. doi: 10.2353/ajpath.2010.090723 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL, Akashi K (2001) The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3- cells, as well as macrophages. J Immunol 166(11):6593–6601PubMedCrossRefGoogle Scholar
  76. Moore MA, Metcalf D (1970) Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18(3):279–296PubMedCrossRefGoogle Scholar
  77. Moore MA, Owen JJ (1967) Experimental studies on the development of the thymus. J Exp Med 126(4):715–726PubMedPubMedCentralCrossRefGoogle Scholar
  78. Morin C, Jotereau F, Augustin A (1992) Patterns of responsiveness of T cell lines and thymocytes reveal waves of specific activity in the post-natal murine thymus. Int Immunol 4(10):1091–1101PubMedCrossRefGoogle Scholar
  79. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463(7280):540–544. doi: 10.1038/nature08636 PubMedCrossRefGoogle Scholar
  80. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1(4):291–301PubMedCrossRefGoogle Scholar
  81. Nassay JJ, Eikelenboom P (1972) Development of the popliteal lymph node in the rat. Acta Morphol Neerl Scand 9(4):381–382PubMedGoogle Scholar
  82. Neutra MR, Mantis NJ, Kraehenbuhl JP (2001) Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2(11):1004–1009. doi: 10.1038/ni1101-1004 PubMedCrossRefGoogle Scholar
  83. Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, Kaufmann KB, McLeod J, Laurenti E, Dunant CF, McPherson JD, Stein LD, Dror Y, Dick JE (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351(6269):aab2116. doi: 10.1126/science.aab2116 PubMedCrossRefGoogle Scholar
  84. Ohmura K, Kawamoto H, Fujimoto S, Ozaki S, Nakao K, Katsura Y (1999) Emergence of T, B, and myeloid lineage-committed as well as multipotent hemopoietic progenitors in the aorta-gonad-mesonephros region of day 10 fetuses of the mouse. J Immunol 163(9):4788–4795PubMedGoogle Scholar
  85. Owen JJ, Ritter MA (1969) Tissue interaction in the development of thymus lymphocytes. J Exp Med 129(2):431–442PubMedPubMedCentralCrossRefGoogle Scholar
  86. Owen RL, Piazza AJ, Ermak TH (1991) Ultrastructural and cytoarchitectural features of lymphoreticular organs in the colon and rectum of adult BALB/c mice. Am J Anat 190(1):10–18. doi: 10.1002/aja.1001900103 PubMedCrossRefGoogle Scholar
  87. Pabst O, Herbrand H, Friedrichsen M, Velaga S, Dorsch M, Berhardt G, Worbs T, Macpherson AJ, Forster R (2006) Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J Immunol 177(10):6824–6832PubMedCrossRefGoogle Scholar
  88. Pabst O, Herbrand H, Worbs T, Friedrichsen M, Yan S, Hoffmann MW, Korner H, Bernhardt G, Pabst R, Forster R (2005) Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur J Immunol 35(1):98–107. doi: 10.1002/eji.200425432 PubMedCrossRefGoogle Scholar
  89. Paige CJ, Kincade PW, Shinefeld LA, Sato VL (1981) Precursors of murine B lymphocytes. Physical and functional characterization, and distinctions from myeloid stem cells. J Exp Med 153(1):154–165PubMedCrossRefGoogle Scholar
  90. Palis J, Yoder MC (2001) Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 29(8):927–936PubMedCrossRefGoogle Scholar
  91. Parker GA, Picut CA, Swanson C, Toot JD (2015) Histologic features of postnatal development of immune system organs in the Sprague-Dawley rat. Toxicol Pathol 43(6):794–815PubMedCrossRefGoogle Scholar
  92. Parker GA, Papenfuss TL (2016) Chapter 10: Immune system. In: Parker GA, Picut CA (eds) Atlas of histology of the juvenile rat. Academic Press/Elsevier, San Diego, CA, pp 293–347Google Scholar
  93. Parrott DV, De Sousa MA, East J (1966) Thymus-dependent areas in the lymphoid organs of neonatally thymectomized mice. J Exp Med 123(1):191–204PubMedPubMedCentralCrossRefGoogle Scholar
  94. Penaranda C, Tang Q, Ruddle NH, Bluestone JA (2010) Prevention of diabetes by FTY720-mediated stabilization of peri-islet tertiary lymphoid organs. Diabetes 59(6):1461–1468. doi: 10.2337/db09-1129 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Perry GA, Sharp JG (1988) Characterization of proximal colonic lymphoid tissue in the mouse. Anat Rec 220(3):305–312. doi: 10.1002/ar.1092200313 PubMedCrossRefGoogle Scholar
  96. Picker LJ, Siegelman MH (1999) Lymphoid tissues and organs. In: Paul WE (ed) Fundamental immunology. Lippincott-Raven, Philadelphia, PA, pp 470–531Google Scholar
  97. Quaglino D, Capri M, Bergamini G, Euclidi E, Zecca L, Franceschi C, Ronchetti IP (1998) Age-dependent remodeling of rat thymus. Morphological and cytofluorimetric analysis from birth up to one year of age. Eur J Cell biol 76(2):156–166. doi: 10.1016/S0171-9335(98)80029-0 PubMedCrossRefGoogle Scholar
  98. Randall TD, Carragher DM, Rangel-Moreno J (2008) Development of secondary lymphoid organs. Ann Rev Immunol 26:627–650. doi: 10.1146/annurev.immunol.26.021607.090257 CrossRefGoogle Scholar
  99. Rangel-Moreno J, Carragher D, Randall TD (2007) Role of lymphotoxin and homeostatic chemokines in the development and function of local lymphoid tissues in the respiratory tract. Inmunologia 26(1):13–28PubMedPubMedCentralGoogle Scholar
  100. Reynolds JD, Morris B (1983) The evolution and involution of Peyer’s patches in fetal and postnatal sheep. Eur J Immunol 13(8):627–635PubMedCrossRefGoogle Scholar
  101. Richie ER, Bass R, Meistrich ML, Dennison DK (1982) Distribution of T lymphocyte subsets in human colostrum. J Immunol 129(3):1116–1119PubMedGoogle Scholar
  102. Roozendaal R, Mebius RE (2011) Stromal cell-immune cell interactions. Ann Rev Immunol 29:23–43. doi: 10.1146/annurev-immunol-031210-101357 CrossRefGoogle Scholar
  103. Ruddle NH (1999) Lymphoid neo-organogenesis: lymphotoxin’s role in inflammation and development. Immunol Res 19(2–3):119–124. doi: 10.1007/BF02786481 PubMedCrossRefGoogle Scholar
  104. Ruddle NH, Akirav EM (2009) Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. J Immunol 183(4):2205–2212. doi: 10.4049/jimmunol.0804324 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sabin FR (1902) On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1:367–389CrossRefGoogle Scholar
  106. Sadler TW (1995) Langman’s medical embryology. Williams & Wilkins, Baltimore, MDGoogle Scholar
  107. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83. doi: 10.1038/ni.1825 PubMedCrossRefGoogle Scholar
  108. Savilahti E (1972) Immunoglobulin-containing cells in the intestinal mucosa and immunoglobulins in the intestinal juice in children. Clin Exp Immunol 11(3):415–425PubMedPubMedCentralGoogle Scholar
  109. Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, Finke D, Luther SA, Junt T, Ludewig B (2008) Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol 9(6):667–674. doi: 10.1038/ni.1605 PubMedCrossRefGoogle Scholar
  110. Seelig LL Jr, Billingham RE (1981) Capacity of “transplanted” lymphocytes to traverse the intestinal epithelium of adult rats. Transplant 32(4):308–314CrossRefGoogle Scholar
  111. Sharma R, Kantwa SM, Jaitawat A, Rani D, Jain N (2013) Postnatal development of thymus in male Swiss mice. Univers J Environ Res Technol 3:385–392Google Scholar
  112. Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328(5979):749–752. doi: 10.1126/science.1185837 PubMedCrossRefGoogle Scholar
  113. Shortman K, Vremec D, Corcoran LM, Georgopoulos K, Lucas K, Wu L (1998) The linkage between T-cell and dendritic cell development in the mouse thymus. Immunol Rev 165:39–46PubMedCrossRefGoogle Scholar
  114. Sonoda T, Hayashi C, Kitamura Y (1983) Presence of mast cell precursors in the yolk sac of mice. Dev Biol 97(1):89–94PubMedCrossRefGoogle Scholar
  115. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288(5475):2369–2373PubMedCrossRefGoogle Scholar
  116. Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6(2):127–134. doi: 10.1038/nri1781 PubMedCrossRefGoogle Scholar
  117. Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR, O’Shea JJ (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206(1):35–41. doi: 10.1084/jem.20072713 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Tizard I (1987) An introduction of veterinary immunology, 3rd edn. Saunders, Philadelphia, PAGoogle Scholar
  119. Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, Ivanov II, Itoh K, Littman DR, Fagarasan S (2008) Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29(2):261–271. doi: 10.1016/j.immuni.2008.04.014 PubMedCrossRefGoogle Scholar
  120. van de Pavert SA, Mebius RE (2010) New insights into the development of lymphoid tissues. Nat Rev Immunol 10(9):664–674. doi: 10.1038/nri2832 PubMedCrossRefGoogle Scholar
  121. van de Pavert SA, Olivier BJ, Goverse G, Vondenhoff MF, Greuter M, Beke P, Kusser K, Hopken UE, Lipp M, Niederreither K, Blomhoff R, Sitnik K, Agace WW, Randall TD, de Jonge WJ, Mebius RE (2009) Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol 10(11):1193–1199. doi: 10.1038/ni.1789 PubMedPubMedCentralCrossRefGoogle Scholar
  122. van Rees EP, Dijkstra CD, van Rooijen N (1986) The early postnatal development of the primary immune response in TNP-KLH-stimulated popliteal lymph node in the rat. Cell Tissue Res 246(3):673–677PubMedCrossRefGoogle Scholar
  123. van Rees EP, Dijkstra CD, van Rooijen N (1987) The early postnatal development of the primary immune response in rat popliteal lymph node, stimulated with thymus-independent type-1 and type-2 antigens. Cell Tissue Res 250(3):695–699PubMedCrossRefGoogle Scholar
  124. van Rees EP, Dopp EA, Dijkstra CD, Sminia T (1985) The postnatal development of cell populations in the rat popliteal lymph node. An immunohistochemical study. Cell Tissue Res 242(2):391–398PubMedCrossRefGoogle Scholar
  125. Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D, Barlow A, Pachnis V, Kioussis D (2007) Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. Nature 446(7135):547–551. doi: 10.1038/nature05597 PubMedCrossRefGoogle Scholar
  126. Vondenhoff MF, van de Pavert SA, Dillard ME, Greuter M, Goverse G, Oliver G, Mebius RE (2009) Lymph sacs are not required for the initiation of lymph node formation. Development 136(1):29–34. doi: 10.1242/dev.028456 PubMedCrossRefGoogle Scholar
  127. Walthall K, Cappon GD, Hurtt ME, Zoetis T (2005) Postnatal development of the gastrointestinal system: a species comparison. Birth Defects Res B Dev Reprod Toxicol 74(2):132–156. doi: 10.1002/bdrb.20040 PubMedCrossRefGoogle Scholar
  128. Yoshida H, Kawamoto H, Santee SM, Hashi H, Honda K, Nishikawa S, Ware CF, Katsura Y, Nishikawa SI (2001) Expression of alpha(4)beta(7) integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J Immunol 167(5):2511–2521PubMedCrossRefGoogle Scholar
  129. Yoshida H, Naito A, Inoue J, Satoh M, Santee-Cooper SM, Ware CF, Togawa A, Nishikawa S, Nishikawa S (2002) Different cytokines induce surface lymphotoxin-alphabeta on IL-7 receptor-alpha cells that differentially engender lymph nodes and Peyer’s patches. Immunity 17(6):823–833PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Charles River Laboratories, Inc.DurhamUSA

Personalised recommendations