Advertisement

Basic Immunobiology

  • George A. Parker
  • Tracey L. Papenfuss
Chapter
Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

Familiarity with basic immunobiology has long been necessary for the interpretation of xenobiotic-related changes in non-clinical toxicology studies. However, that requirement has become even more critical in the current era of biopharmaceutical development, wherein the candidate drugs may cause immunomodulation as a desired pharmacological endpoint. In these latter studies the toxicologic pathologist and toxicologist must distinguish between direct pharmacological effects, excessive pharmacological effects, off-target effects, or effects that are secondary to the intended pharmacological effects. In many studies the pathology observations are complicated by stress influences on the test animals, and in juvenile toxicology studies there is the additional variable of postnatal organ development. The aim of this chapter is to provide toxicologists and toxicologic pathologists with a brief overview of the salient immunologic concepts, structures, cells and physiologic processes. Current review-type references are provided for further insight into the various components of this immense topic.

Keywords

Immunobiology B cells T cells Macrophages Neutrophils NK cells Eosinophils Basophils Memory cells Effector cells Signaling molecules 

Notes

Acknowledgements

Preparation of figures by Cynthia Swanson, M.S. is gratefully acknowledged.

References

  1. Abbas AK, Lichtman AH (2015) Cellular and molecular immunology, 8th edn. Elsevier Health Sciences, CanadaGoogle Scholar
  2. Adamopoulou E, Tenzer S, Hillen N, Klug P, Rota IA, Tietz S, Gebhardt M, Stevanovic S, Schild H, Tolosa E, Melms A, Stoeckle C (2013) Exploring the MHC-peptide matrix of central tolerance in the human thymus. Nat Commun 4:2039. doi: 10.1038/ncomms3039 PubMedCrossRefGoogle Scholar
  3. Ahmed MS, Bae YS (2014) Dendritic cell-based therapeutic cancer vaccines: past, present and future. Clin Exp Vaccine Res 3(2):113–116. doi: 10.7774/cevr.2014.3.2.113 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11(6):375–388. doi: 10.1038/nri2992 PubMedCrossRefGoogle Scholar
  5. Amanna IJ, Carlson NE, Slifka MK (2007) Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 357(19):1903–1915. doi: 10.1056/NEJMoa066092 PubMedCrossRefGoogle Scholar
  6. Amano A, Nakagawa I, Yoshimori T (2006) Autophagy in innate immunity against intracellular bacteria. J Biochem 140(2):161–166. doi: 10.1093/jb/mvj162 PubMedCrossRefGoogle Scholar
  7. Andrade RM, Wessendarp M, Gubbels MJ, Striepen B, Subauste CS (2006) CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J Clin Invest 116(9):2366–2377. doi: 10.1172/JCI28796 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811. doi: 10.1146/annurev.immunol.18.1.767 PubMedCrossRefGoogle Scholar
  9. Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci U S A 106(33):14108–14113. doi: 10.1073/pnas.0804650106 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barnum SR (1995) Complement biosynthesis in the central nervous system. Crit Rev Oral Biol Med 6(2):132–146PubMedCrossRefGoogle Scholar
  11. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385(6617):640–644. doi: 10.1038/385640a0 PubMedCrossRefGoogle Scholar
  12. Bejarano E, Cuervo AM (2010) Chaperone-mediated autophagy. Proc Am Thorac Soc 7(1):29–39PubMedPubMedCentralCrossRefGoogle Scholar
  13. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141. doi: 10.1016/j.cell.2014.03.011 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346(6212):954–959. doi: 10.1126/science.1260144 PubMedCrossRefGoogle Scholar
  15. Belkaid Y, Tamoutounour S (2016) The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol 16(6):353–366. doi: 10.1038/nri.2016.48 PubMedCrossRefGoogle Scholar
  16. Benoist C, Mathis D (2001) Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2(9):797–801. doi: 10.1038/ni0901-797 PubMedCrossRefGoogle Scholar
  17. Berek C (2016) Eosinophils: important players in humoral immunity. Clin Exp Immunol 183(1):57–64. doi: 10.1111/cei.12695 PubMedCrossRefGoogle Scholar
  18. Berek C, Berger A, Apel M (1991) Maturation of the immune response in germinal centers. Cell 67(6):1121–1129PubMedCrossRefGoogle Scholar
  19. Berglund P, Finzi D, Bennink JR, Yewdell JW (2007) Viral alteration of cellular translational machinery increases defective ribosomal products. J Virol 81(13):7220–7229. doi: 10.1128/JVI.00137-07 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. doi: 10.1038/nrmicro2070 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Beyersdorf N, Hanke T, Kerkau T, Hunig T (2005) Superagonistic anti-CD28 antibodies: potent activators of regulatory T cells for the therapy of autoimmune diseases. Ann Rheum Dis 64(Suppl 4):iv91–iv95. doi: 10.1136/ard.2005.042564 PubMedPubMedCentralGoogle Scholar
  22. Beyersdorf N, Balbach K, Hunig T, Kerkau T (2006a) Large-scale expansion of rat CD4+ CD25+ T(reg) cells in the absence of T-cell receptor stimulation. Immunology 119(4):441–450. doi: 10.1111/j.1365-2567.2006.02455.x PubMedPubMedCentralCrossRefGoogle Scholar
  23. Beyersdorf N, Hanke T, Kerkau T, Hunig T (2006b) CD28 superagonists put a break on autoimmunity by preferentially activating CD4+CD25+ regulatory T cells. Autoimmun Rev 5(1):40–45. doi: 10.1016/j.autrev.2005.06.001 PubMedCrossRefGoogle Scholar
  24. Biron CA (2001) Interferons alpha and beta as immune regulators—a new look. Immunity 14(6):661–664PubMedCrossRefGoogle Scholar
  25. Bjorkstrom NK, Ljunggren HG, Michaelsson J (2016) Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 16(5):310–320. doi: 10.1038/nri.2016.34 PubMedCrossRefGoogle Scholar
  26. Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L, Schwartz O, Deretic V, Piguet V (2010) Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32(5):654–669. doi: 10.1016/j.immuni.2010.04.011 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bland P (1988) MHC class II expression by the gut epithelium. Immunol Today 9(6):174–178. doi: 10.1016/0167-5699(88)91293-5 PubMedCrossRefGoogle Scholar
  28. Blander JM (2014) A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 14(9):601–618. doi: 10.1038/nri3720 PubMedCrossRefGoogle Scholar
  29. Blank M, Barzilai O, Shoenfeld Y (2007) Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol 32(1):111–118PubMedCrossRefGoogle Scholar
  30. Bohnhoff M, Drake BL, Miller CP (1954) Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine 86(1):132–137CrossRefGoogle Scholar
  31. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG, Eberl G (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510. doi: 10.1038/nature07450 PubMedCrossRefGoogle Scholar
  32. Bouslimani A, Porto C, Rath CM, Wang M, Guo Y, Gonzalez A, Berg-Lyon D, Ackermann G, Moeller Christensen GJ, Nakatsuji T, Zhang L, Borkowski AW, Meehan MJ, Dorrestein K, Gallo RL, Bandeira N, Knight R, Alexandrov T, Dorrestein PC (2015) Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci U S A 112(17):E2120–E2129. doi: 10.1073/pnas.1424409112 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Bradfute SB, Castillo EF, Arko-Mensah J, Chauhan S, Jiang S, Mandell M, Deretic V (2013) Autophagy as an immune effector against tuberculosis. Curr Opin Microbiol 16(3):355–365. doi: 10.1016/j.mib.2013.05.003 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Brennan FR, Morton LD, Spindeldreher S, Kiessling A, Allenspach R, Hey A, Muller PY, Frings W, Sims J (2010) Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. mAbs 2(3):233–255PubMedPubMedCentralCrossRefGoogle Scholar
  35. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535PubMedCrossRefGoogle Scholar
  36. Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5(8):641–654. doi: 10.1038/nri1668 PubMedCrossRefGoogle Scholar
  37. Buchmann K (2014) Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 5:459. doi: 10.3389/fimmu.2014.00459 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Buckley CD, Barone F, Nayar S, Benezech C, Caamano J (2015) Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu Rev Immunol 33:715–745. doi: 10.1146/annurev-immunol-032713-120252 PubMedCrossRefGoogle Scholar
  39. Buczynski MW, Dumlao DS, Dennis EA (2009) Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 50(6):1015–1038. doi: 10.1194/jlr.R900004-JLR200 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13(11):790–801. doi: 10.1038/nri3535 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TM, Mellins ED (2005) Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol Rev 207:242–260. doi: 10.1111/j.0105-2896.2005.00306.x PubMedCrossRefGoogle Scholar
  42. Bushar ND, Corbo E, Schmidt M, Maltzman JS, Farber DL (2010) Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis. Proc Natl Acad Sci U S A 107(2):827–831. doi: 10.1073/pnas.0908126107 PubMedCrossRefGoogle Scholar
  43. Buts JP, De Keyser N, Kolanowski J, Sokal E, Van Hoof F (1993) Maturation of villus and crypt cell functions in rat small intestine. Role of dietary polyamines. Dig Dis Sci 38(6):1091–1098PubMedCrossRefGoogle Scholar
  44. Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65. doi: 10.1038/ncb2883 PubMedCrossRefGoogle Scholar
  45. Cardone J, Le Friec G, Vantourout P, Roberts A, Fuchs A, Jackson I, Suddason T, Lord G, Atkinson JP, Cope A, Hayday A, Kemper C (2010) Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol 11(9):862–871. doi: 10.1038/ni.1917 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Carrasco YR, Batista FD (2007) B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27(1):160–171. doi: 10.1016/j.immuni.2007.06.007 PubMedCrossRefGoogle Scholar
  47. Carroll MC (2004a) The complement system in B cell regulation. Mol Immunol 41(2–3):141–146. doi: 10.1016/j.molimm.2004.03.017 PubMedCrossRefGoogle Scholar
  48. Carroll MC (2004b) The complement system in regulation of adaptive immunity. Nat Immunol 5(10):981–986. doi: 10.1038/ni1113 PubMedCrossRefGoogle Scholar
  49. Carroll MC, Isenman DE (2012) Regulation of humoral immunity by complement. Immunity 37(2):199–207. doi: 10.1016/j.immuni.2012.08.002 PubMedCrossRefGoogle Scholar
  50. Carsetti R, Rosado MM, Wardmann H (2004) Peripheral development of B cells in mouse and man. Immunol Rev 197:179–191PubMedCrossRefGoogle Scholar
  51. Caza T, Landas S (2015) Functional and phenotypic plasticity of CD4(+) T cell subsets. Biomed Res Int 2015:521957. doi: 10.1155/2015/521957 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Celada A, Gray PW, Rinderknecht E, Schreiber RD (1984) Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J Exp Med 160(1):55–74PubMedCrossRefGoogle Scholar
  53. Chaturvedi A, Dorward D, Pierce SK (2008) The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 28(6):799–809. doi: 10.1016/j.immuni.2008.03.019 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886. doi: 10.1084/jem.20030152 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Chen J, Rao JN, Zou T, Liu L, Marasa BS, Xiao L, Zeng X, Turner DJ, Wang JY (2007) Polyamines are required for expression of Toll-like receptor 2 modulating intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 293(3):G568–G576. doi: 10.1152/ajpgi.00201.2007 PubMedCrossRefGoogle Scholar
  56. Chen M, Daha MR, Kallenberg CG (2010) The complement system in systemic autoimmune disease. J Autoimmun 34(3):J276–J286. doi: 10.1016/j.jaut.2009.11.014 PubMedCrossRefGoogle Scholar
  57. Chen X, Li W, Ren J, Huang D, He WT, Song Y, Yang C, Li W, Zheng X, Chen P, Han J (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121. doi: 10.1038/cr.2013.171 PubMedCrossRefGoogle Scholar
  58. Chew V, Toh HC, Abastado JP (2012) Immune microenvironment in tumor progression: characteristics and challenges for therapy. J Oncol 2012:608406. doi: 10.1155/2012/608406 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Chikuma S, Bluestone JA (2003) CTLA-4 and tolerance: the biochemical point of view. Immunol Res 28(3):241–253. doi: 10.1385/IR:28:3:241 PubMedCrossRefGoogle Scholar
  60. Cho JH, Feldman M (2015) Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat Med 21(7):730–738. doi: 10.1038/nm.3897 PubMedCrossRefGoogle Scholar
  61. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, Frenette PS (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271. doi: 10.1084/jem.20101688 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Chu H, Khosravi A, Kusumawardhani IP, Kwon AH, Vasconcelos AC, Cunha LD, Mayer AE, Shen Y, Wu WL, Kambal A, Targan SR, Xavier RJ, Ernst PB, Green DR, McGovern DP, Virgin HW, Mazmanian SK (2016) Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352(6289):1116–1120. doi: 10.1126/science.aad9948 PubMedCrossRefGoogle Scholar
  63. Clark SL Jr (1962) The reticulum of lymph nodes in mice studied with the electron microscope. Am J Anat 110:217–257. doi: 10.1002/aja.1001100303 PubMedCrossRefGoogle Scholar
  64. Clark IA (2001) Heterologous immunity revisited. Parasitology 122(Suppl):S51–S59PubMedCrossRefGoogle Scholar
  65. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, Kupper TS (2006) The vast majority of CLA+ T cells are resident in normal skin. J Immunol 176(7):4431–4439PubMedCrossRefGoogle Scholar
  66. Clark RA, Watanabe R, Teague JE, Schlapbach C, Tawa MC, Adams N, Dorosario AA, Chaney KS, Cutler CS, Leboeuf NR, Carter JB, Fisher DC, Kupper TS (2012) Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Transl Med 4(117) 117ra117. doi: 10.1126/scitranslmed.3003008
  67. Clarke EV, Tenner AJ (2014) Complement modulation of T cell immune responses during homeostasis and disease. J Leukoc Biol 96(5):745–756. doi: 10.1189/jlb.3MR0214-109R PubMedPubMedCentralCrossRefGoogle Scholar
  68. Clement CC, Rotzschke O, Santambrogio L (2011) The lymph as a pool of self-antigens. Trends Immunol 32(1):6–11. doi: 10.1016/j.it.2010.10.004 PubMedCrossRefGoogle Scholar
  69. Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107(7):1009–1016PubMedCrossRefGoogle Scholar
  70. Cook-Mills JM, Johnson JD, Deem TL, Ochi A, Wang L, Zheng Y (2004) Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity. Biochem J 378(Pt 2):539–547. doi: 10.1042/BJ20030794 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN (2007) Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol 82(6):1365–1374. doi: 10.1189/jlb.0307166 PubMedCrossRefGoogle Scholar
  72. Coomes SM, Pelly VS, Wilson MS (2013) Plasticity within the alphabeta(+)CD4(+) T-cell lineage: when, how and what for? Open Biol 3(1):120157. doi: 10.1098/rsob.120157 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Coppola D, Nebozhyn M, Khalil F, Dai H, Yeatman T, Loboda A, Mule JJ (2011) Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol 179(1):37–45. doi: 10.1016/j.ajpath.2011.03.007 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Cossarizza A, Ortolani C, Paganelli R, Barbieri D, Monti D, Sansoni P, Fagiolo U, Castellani G, Bersani F, Londei M, Franceschi C (1996) CD45 isoforms expression on CD4+ and CD8+ T cells throughout life, from newborns to centenarians: implications for T cell memory. Mech Ageing Dev 86(3):173–195PubMedCrossRefGoogle Scholar
  75. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697. doi: 10.1126/science.1177486 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777PubMedCrossRefGoogle Scholar
  77. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433. doi: 10.1126/science.342.6165.1432 PubMedCrossRefGoogle Scholar
  78. Cresswell P (1996) Invariant chain structure and MHC class II function. Cell 84(4):505–507PubMedCrossRefGoogle Scholar
  79. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R (2003) Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 171(10):4969–4973PubMedCrossRefGoogle Scholar
  80. Crotzer VL, Blum JS (2010) Autophagy and adaptive immunity. Immunology 131(1):9–17. doi: 10.1111/j.1365-2567.2010.03321.x PubMedPubMedCentralGoogle Scholar
  81. Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14(2):70–77. doi: 10.1016/j.tcb.2003.12.002 PubMedCrossRefGoogle Scholar
  82. Cunningham MW (2012) Streptococcus and rheumatic fever. Curr Opin Rheumatol 24(4):408–416. doi: 10.1097/BOR.0b013e32835461d3 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Cunningham MW (2014) Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int Rev Immunol 33(4):314–329. doi: 10.3109/08830185.2014.917411 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Cunningham MW (2016) Post-streptococcal autoimmune sequelae: rheumatic fever and beyond. In: JJ F, DL S, VA F (eds) Streptococcus pyogenes: basic biology to clinical manifestations. University of Oklahoma Health Sciences Center, Oklahoma CityGoogle Scholar
  85. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol (12):1347–1355. doi: 10.1038/ni.1677
  86. Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL (2014) Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 15(4):413–423. doi: 10.1016/j.chom.2014.03.006 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Davidson S, Crotta S, McCabe TM, Wack A (2014) Pathogenic potential of interferon alphabeta in acute influenza infection. Nat Commun 5:3864. doi: 10.1038/ncomms4864 PubMedPubMedCentralCrossRefGoogle Scholar
  88. De Boer RJ, Perelson AS (2013) Quantifying T lymphocyte turnover. J Theor Biol 327:45–87. doi: 10.1016/j.jtbi.2012.12.025 PubMedPubMedCentralCrossRefGoogle Scholar
  89. De Silva NS, Klein U (2015) Dynamics of B cells in germinal centres. Nat Rev Immunol 15(3):137–148. doi: 10.1038/nri3804 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Delves PJ, Martin SJ, Burton DR, Roitt IM (2006) Antibodies. In: Roitt’s essential immunology. Wiley-Blackwell, West Sussex, UK, pp. 53–78Google Scholar
  91. den Haan JM, Martinez-Pomares L (2013) Macrophage heterogeneity in lymphoid tissues. Semin Immunopathol 35(5):541–552. doi: 10.1007/s00281-013-0378-4 CrossRefGoogle Scholar
  92. Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15(8):511–523. doi: 10.1038/nri3859 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Denzin LK, Fallas JL, Prendes M, Yi W (2005) Right place, right time, right peptide: DO keeps DM focused. Immunol Rev 207:279–292. doi: 10.1111/j.0105-2896.2005.00302.x PubMedCrossRefGoogle Scholar
  94. Deretic V (2005) Autophagy in innate and adaptive immunity. Trends Immunol 26(10):523–528. doi: 10.1016/j.it.2005.08.003 PubMedCrossRefGoogle Scholar
  95. Deretic V (2006) Autophagy as an immune defense mechanism. Curr Opin Immunol 18(4):375–382. doi: 10.1016/j.coi.2006.05.019 PubMedCrossRefGoogle Scholar
  96. Deretic V (2011) Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 240(1):92–104PubMedPubMedCentralCrossRefGoogle Scholar
  97. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13(10):722–737. doi: 10.1038/nri3532 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Deretic V, Kimura T, Timmins G, Moseley P, Chauhan S, Mandell M (2015) Immunologic manifestations of autophagy. J Clin Invest 125(1):75–84. doi: 10.1172/JCI73945 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Di Caro G, Marchesi F (2014) Tertiary lymphoid tissue: A gateway for T cells in the tumor microenvironment. Oncoimmunology 3:e28850. doi: 10.4161/onci.28850 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Di Caro G, Bergomas F, Grizzi F, Doni A, Bianchi P, Malesci A, Laghi L, Allavena P, Mantovani A, Marchesi F (2014) Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res 20(8):2147–2158. doi: 10.1158/1078-0432.CCR-13-2590 PubMedCrossRefGoogle Scholar
  101. Diacovich L, Gorvel JP (2010) Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol 8(2):117–128. doi: 10.1038/nrmicro2295 PubMedCrossRefGoogle Scholar
  102. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, Rabbe N, Laurans L, Tartour E, de Chaisemartin L, Lebecque S, Fridman WH, Cadranel J (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26(27):4410–4417. doi: 10.1200/JCO.2007.15.0284 PubMedCrossRefGoogle Scholar
  103. Dolan BP, Li L, Veltri CA, Ireland CM, Bennink JR, Yewdell JW (2011) Distinct pathways generate peptides from defective ribosomal products for CD8+ T cell immunosurveillance. J Immunol 186(4):2065–2072. doi: 10.4049/jimmunol.1003096 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14(1):20–32. doi: 10.1038/nrmicro3552 PubMedCrossRefGoogle Scholar
  105. Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, Vandenabeele P, Bertrand MJ (2013) RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ 20(10):1381–1392. doi: 10.1038/cdd.2013.94 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Donohoe DR, Wali A, Brylawski BP, Bultman SJ (2012) Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS One 7(9):e46589. doi: 10.1371/journal.pone.0046589 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Doyle AG, Herbein G, Montaner LJ, Minty AJ, Caput D, Ferrara P, Gordon S (1994) Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol 24(6):1441–1445. doi: 10.1002/eji.1830240630 PubMedCrossRefGoogle Scholar
  108. Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4(1):11–22. doi: 10.1038/nrc1252 PubMedCrossRefGoogle Scholar
  109. Dufour C, Dandrifosse G, Forget P, Vermesse F, Romain N, Lepoint P (1988) Spermine and spermidine induce intestinal maturation in the rat. Gastroenterology 95(1):112–116PubMedCrossRefGoogle Scholar
  110. Dugast M, Toussaint H, Dousset C, Benaroch P (2005) AP2 clathrin adaptor complex, but not AP1, controls the access of the major histocompatibility complex (MHC) class II to endosomes. J Biol Chem 280(20):19656–19664. doi: 10.1074/jbc.M501357200 PubMedCrossRefGoogle Scholar
  111. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998. doi: 10.1038/ni1102-991 PubMedCrossRefGoogle Scholar
  112. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 30(23):4701–4711. doi: 10.1038/emboj.2011.398 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas A, Weigert R, Robenek H, Proikas-Cezanne T, Deretic V (2014) Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 24(6):609–620. doi: 10.1016/j.cub.2014.02.008 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. doi: 10.1126/science.1110591 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 208(3):421–428. doi: 10.1084/jem.20110132 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Eisenberg R (2003) Mechanisms of autoimmunity. Immunol Res 27(2–3):203–218. doi: 10.1385/IR:27:2-3:203 PubMedCrossRefGoogle Scholar
  117. EL Andaloussi S, Mager I, XO B, MJ W (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357. doi: 10.1038/nrd3978 PubMedCrossRefGoogle Scholar
  118. Enerback L (1987) Mucosal mast cells in the rat and in man. Int Arch Allergy Appl Immunol 82(3–4):249–255PubMedCrossRefGoogle Scholar
  119. Eng SS, DeFelice ML (2016) The role and immunobiology of eosinophils in the respiratory system: a comprehensive review. Clin Rev Allergy Immunol 50(2):140–158. doi: 10.1007/s12016-015-8526-3 PubMedCrossRefGoogle Scholar
  120. Farber DL, Yudanin NA, Restifo NP (2014) Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 14(1):24–35. doi: 10.1038/nri3567 PubMedCrossRefGoogle Scholar
  121. Fearon DT, Carr JM, Telaranta A, Carrasco MJ, Thaventhiran JE (2006) The rationale for the IL-2-independent generation of the self-renewing central memory CD8+ T cells. Immunol Rev 211:104–118. doi: 10.1111/j.0105-2896.2006.00390.x PubMedCrossRefGoogle Scholar
  122. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, Browning JL, Goossens N, Nakagawa S, Gunasekaran G, Schwartz ME, Kobayashi M, Kumada H, Berger M, Pappo O, Rajewsky K, Hoshida Y, Karin M, Heikenwalder M, Ben-Neriah Y, Pikarsky E (2015) Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 16(12):1235–1244. doi: 10.1038/ni.3290 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Flad HD, Brandt E (2010) Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell Mol Life Sci 67(14):2363–2386. doi: 10.1007/s00018-010-0306-x PubMedCrossRefGoogle Scholar
  124. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  125. Fujita N, Saitoh T, Kageyama S, Akira S, Noda T, Yoshimori T (2009) Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. J Biol Chem 284(47):32602–32609. doi: 10.1074/jbc.M109.037671 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331):543–547. doi: 10.1038/nature09646 PubMedCrossRefGoogle Scholar
  127. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548):1871–1875. doi: 10.1126/science.294.5548.1871 PubMedCrossRefGoogle Scholar
  128. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi: 10.1038/nri2506 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022. doi: 10.1038/ni.2703 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12(7):503–516. doi: 10.1038/nri3228 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120. doi: 10.1038/cdd.2011.96 PubMedCrossRefGoogle Scholar
  132. Ganusov VV, De Boer RJ (2007) Do most lymphocytes in humans really reside in the gut? Trends Immunol 28(12):514–518. doi: 10.1016/j.it.2007.08.009 PubMedCrossRefGoogle Scholar
  133. Garcia GE, Xia Y, Chen S, Wang Y, Ye RD, Harrison JK, Bacon KB, Zerwes HG, Feng L (2000) NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J Leukoc Biol 67(4):577–584PubMedGoogle Scholar
  134. Gaston RS, Deierhoi MH, Patterson T, Prasthofer E, Julian BA, Barber WH, Laskow DA, Diethelm AG, Curtis JJ (1991) OKT3 first-dose reaction: association with T cell subsets and cytokine release. Kidney Int 39(1):141–148PubMedCrossRefGoogle Scholar
  135. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, Wang E, Douek DC, Price DA, June CH, Marincola FM, Roederer M, Restifo NP (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297. doi: 10.1038/nm.2446 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Gattinoni L, Klebanoff CA, Restifo NP (2012) Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 12(10):671–684. doi: 10.1038/nrc3322 PubMedCrossRefGoogle Scholar
  137. Gaudier E, Jarry A, Blottiere HM, de Coppet P, Buisine MP, Aubert JP, Laboisse C, Cherbut C, Hoebler C (2004) Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 287(6):G1168–G1174. doi: 10.1152/ajpgi.00219.2004 PubMedCrossRefGoogle Scholar
  138. Gaulke CA, Barton CL, Proffitt S, Tanguay RL, Sharpton TJ (2016) Triclosan exposure is associated with rapid restructuring of the microbiome in adult Zebrafish. PLoS One 11(5):e0154632. doi: 10.1371/journal.pone.0154632 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Gauntt CJ, Arizpe HM, Higdon AL, Wood HJ, Bowers DF, Rozek MM, Crawley R (1995) Molecular mimicry, anti-coxsackievirus B3 neutralizing monoclonal antibodies, and myocarditis. J Immunol 154(6):2983–2995PubMedGoogle Scholar
  140. Geppert TD, Lipsky PE (1985) Antigen presentation by interferon-gamma-treated endothelial cells and fibroblasts: differential ability to function as antigen-presenting cells despite comparable Ia expression. J Immunol 135(6):3750–3762PubMedGoogle Scholar
  141. Gerritsen B, Pandit A (2016) The memory of a killer T cell: models of CD8(+) T cell differentiation. Immunol Cell Biol 94(3):236–241. doi: 10.1038/icb.2015.118 PubMedCrossRefGoogle Scholar
  142. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4(3):231–237. doi: 10.1038/nri1309 PubMedCrossRefGoogle Scholar
  143. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. doi: 10.1016/j.immuni.2010.05.007 PubMedCrossRefGoogle Scholar
  144. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964. doi: 10.1038/nri1733 PubMedCrossRefGoogle Scholar
  145. Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14(5):428–436. doi: 10.1038/ni.2588 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Goswami R, Kaplan MH (2011) A brief history of IL-9. J Immunol 186(6):3283–3288. doi: 10.4049/jimmunol.1003049 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9(5):353–363. doi: 10.1038/nri2545 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Green DR, Oguin TH, Martinez J (2016) The clearance of dying cells: table for two. Cell Death Differ 23(6):915–926. doi: 10.1038/cdd.2015.172 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548. doi: 10.1146/annurev.immunol.23.021704.115611 PubMedCrossRefGoogle Scholar
  150. Gretz JE, Norbury CC, Anderson AO, Proudfoot AE, Shaw S (2000) Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med 192(10):1425–1440PubMedPubMedCentralCrossRefGoogle Scholar
  151. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Program NCS, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192. doi: 10.1126/science.1171700 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Griffiths GM, Berek C, Kaartinen M, Milstein C (1984) Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312(5991):271–275PubMedCrossRefGoogle Scholar
  153. Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Drager R, Eibel H, Fischer B, Schaffer AA, Mages HW, Kroczek RA, Peter HH (2003) Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 4(3):261–268. doi: 10.1038/ni902 PubMedCrossRefGoogle Scholar
  154. Gross O, Thomas CJ, Guarda G, Tschopp J (2011) The inflammasome: an integrated view. Immunol Rev 243(1):136–151. doi: 10.1111/j.1600-065X.2011.01046.x PubMedCrossRefGoogle Scholar
  155. Gurung P, Malireddi RK, Anand PK, Demon D, Vande Walle L, Liu Z, Vogel P, Lamkanfi M, Kanneganti TD (2012) Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem 287(41):34474–34483. doi: 10.1074/jbc.M112.401406 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766. doi: 10.1016/j.cell.2004.11.038 PubMedCrossRefGoogle Scholar
  157. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, Ravoet M, Le Buanec H, Sibille C, Manfouo-Foutsop G, Veys I, Haibe-Kains B, Singhal SK, Michiels S, Rothe F, Salgado R, Duvillier H, Ignatiadis M, Desmedt C, Bron D, Larsimont D, Piccart M, Sotiriou C, Willard-Gallo K (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123(7):2873–2892. doi: 10.1172/JCI67428 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341(6151):1250–1253. doi: 10.1126/science.1240988 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9(9):1131–1137. doi: 10.1038/nm917 PubMedCrossRefGoogle Scholar
  160. Hanke T (2006) Lessons from TGN1412. Lancet 368(9547):1569–1570 . doi: 10.1016/S0140-6736(06)69651-7author reply 1570PubMedCrossRefGoogle Scholar
  161. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132. doi: 10.1038/ni1254 PubMedCrossRefGoogle Scholar
  162. Harris J, Hartman M, Roche C, Zeng SG, O’Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J, Kornfeld H, Fitzgerald KA, Lavelle EC (2011) Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 286(11):9587–9597. doi: 10.1074/jbc.M110.202911 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Harwood NE, Batista FD (2010) Early events in B cell activation. Annu Rev Immunol 28:185–210. doi: 10.1146/annurev-immunol-030409-101216 PubMedCrossRefGoogle Scholar
  164. Hauser AE, Junt T, Mempel TR, Sneddon MW, Kleinstein SH, Henrickson SE, von Andrian UH, Shlomchik MJ, Haberman AM (2007) Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26(5):655–667. doi: 10.1016/j.immuni.2007.04.008 PubMedCrossRefGoogle Scholar
  165. Henault J, Martinez J, Riggs JM, Tian J, Mehta P, Clarke L, Sasai M, Latz E, Brinkmann MM, Iwasaki A, Coyle AJ, Kolbeck R, Green DR, Sanjuan MA (2012) Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37(6):986–997. doi: 10.1016/j.immuni.2012.09.014 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Henckaerts L, Cleynen I, Brinar M, John JM, Van Steen K, Rutgeerts P, Vermeire S (2011) Genetic variation in the autophagy gene ULK1 and risk of Crohn’s disease. Inflamm Bowel Dis 17(6):1392–1397. doi: 10.1002/ibd.21486 PubMedCrossRefGoogle Scholar
  167. Herndler-Brandstetter D, Landgraf K, Jenewein B, Tzankov A, Brunauer R, Brunner S, Parson W, Kloss F, Gassner R, Lepperdinger G, Grubeck-Loebenstein B (2011) Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. J Immunol 186(12):6965–6971. doi: 10.4049/jimmunol.1100243 PubMedCrossRefGoogle Scholar
  168. Hirahara K, Nakayama T (2016) CD4+ T-cell subsets in inflammatory diseases: beyond the TH1/TH2 paradigm. Int Immunol 28(4):163–171. doi: 10.1093/intimm/dxw006
  169. Hirano M, Das S, Guo P, Cooper MD (2011) The evolution of adaptive immunity in vertebrates. Adv Immunol 109:125–157. doi: 10.1016/B978-0-12-387664-5.00004-2 PubMedCrossRefGoogle Scholar
  170. Hixenbaugh EA, Goeckeler ZM, Papaiya NN, Wysolmerski RB, Silverstein SC, Huang AJ (1997) Stimulated neutrophils induce myosin light chain phosphorylation and isometric tension in endothelial cells. Am J Physiol 273(2 Pt 2):H981–H988PubMedGoogle Scholar
  171. Horner S, Ryan D, Robinson S, Callander R, Stamp K, Roberts RA (2013) Target organ toxicities in studies conducted to support first time in man dosing: an analysis across species and therapy areas. Regul Toxicol Pharmacol, RTP 65(3):334–343. doi: 10.1016/j.yrtph.2013.02.002 PubMedCrossRefGoogle Scholar
  172. Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D, Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351(6279):1329–1333. doi: 10.1126/science.aaf1648 PubMedCrossRefGoogle Scholar
  173. Huang W, August A (2015) The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation. J Leukoc Biol 97(3):477–485. doi: 10.1189/jlb.1RI0614-293R PubMedCrossRefGoogle Scholar
  174. Huang AJ, Manning JE, Bandak TM, Ratau MC, Hanser KR, Silverstein SC (1993) Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. J Cell Biol 120(6):1371–1380PubMedCrossRefGoogle Scholar
  175. Hughes EA, Hammond C, Cresswell P (1997) Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci U S A 94(5):1896–1901PubMedPubMedCentralCrossRefGoogle Scholar
  176. Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. doi: 10.1038/nature11234 CrossRefGoogle Scholar
  177. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91(4):521–530PubMedCrossRefGoogle Scholar
  178. Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3(5):371–382. doi: 10.1038/nri1086 PubMedCrossRefGoogle Scholar
  179. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465(7296):346–349. doi: 10.1038/nature09074 PubMedCrossRefGoogle Scholar
  180. Jacob J, Kelsoe G, Rajewsky K, Weiss U (1991) Intraclonal generation of antibody mutants in germinal centres. Nature 354(6352):389–392. doi: 10.1038/354389a0 PubMedCrossRefGoogle Scholar
  181. Janeway CJ (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13PubMedCrossRefGoogle Scholar
  182. Jin Y, Sun C, Feng L, Li P, Xiao L, Ren Y, Wang D, Li C, Chen L (2014) Regulation of SIV antigen-specific CD4+ T cellular immunity via autophagosome-mediated MHC II molecule-targeting antigen presentation in mice. PLoS One 9(3):e93143. doi: 10.1371/journal.pone.0093143 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M, Fink K, Henrickson SE, Shayakhmetov DM, Di Paolo NC, van Rooijen N, Mempel TR, Whelan SP, von Andrian UH (2007) Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450(7166):110–114. doi: 10.1038/nature06287 PubMedCrossRefGoogle Scholar
  184. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38(2):209–223. doi: 10.1016/j.immuni.2013.02.003 PubMedCrossRefGoogle Scholar
  185. Kaisho T (2010) Molecular mechanisms for plasmacytoid dendritic cell function and development. Vaccine 28(50):8046–8047. doi: 10.1016/j.vaccine.2010.09.025 PubMedCrossRefGoogle Scholar
  186. Kamens J, Paskind M, Hugunin M, Talanian RV, Allen H, Banach D, Bump N, Hackett M, Johnston CG, Li P et al (1995) Identification and characterization of ICH-2, a novel member of the interleukin-1 beta-converting enzyme family of cysteine proteases. J Biol Chem 270(25):15250–15256PubMedCrossRefGoogle Scholar
  187. Kaplan MH, Hufford MM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol 15(5):295–307. doi: 10.1038/nri3824 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Kassiotis G, Garcia S, Simpson E, Stockinger B (2002) Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol 3(3):244–250. doi: 10.1038/ni766 PubMedCrossRefGoogle Scholar
  189. Kassiotis G, Gray D, Kiafard Z, Zwirner J, Stockinger B (2006) Functional specialization of memory TH cells revealed by expression of integrin CD49b. J Immunol 177(2):968–975PubMedCrossRefGoogle Scholar
  190. Kawabata TT, Evans EW (2012) Development of immunotoxicity testing strategies for immunomodulatory drugs. Toxicol Pathol 40(2):288–293PubMedCrossRefGoogle Scholar
  191. Kelsoe G (1998) V(D)J hypermutation and DNA mismatch repair: vexed by fixation. Proc Natl Acad Sci U S A 95(12):6576–6577PubMedPubMedCentralCrossRefGoogle Scholar
  192. Kemper C, Kohl J (2013) Novel roles for complement receptors in T cell regulation and beyond. Mol Immunol 56(3):181–190. doi: 10.1016/j.molimm.2013.05.223 PubMedCrossRefGoogle Scholar
  193. Kenter MJ, Cohen AF (2006) Establishing risk of human experimentation with drugs: lessons from TGN1412. Lancet 368(9544):1387–1391. doi: 10.1016/S0140-6736(06)69562-7 PubMedCrossRefGoogle Scholar
  194. Kerr J, Wyllie A, Currie A (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedPubMedCentralCrossRefGoogle Scholar
  195. Khaled AR, Durum SK (2002) Lymphocide: cytokines and the control of lymphoid homeostasis. Nat Rev Immunol 2(11):817–830. doi: 10.1038/nri931 PubMedCrossRefGoogle Scholar
  196. Khan S, de Giuli R, Schmidtke G, Bruns M, Buchmeier M, van den Broek M, Groettrup M (2001) Cutting edge: neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J Immunol 167(9):4801–4804PubMedCrossRefGoogle Scholar
  197. Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1):1–14. doi: 10.1111/j.1365-2567.2007.02587.x PubMedPubMedCentralCrossRefGoogle Scholar
  198. Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E, Shakhar G, Ludwig A, Lira SA, Jung S (2011) In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118(22):e156–e167. doi: 10.1182/blood-2011-04-348946 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Klechevsky E, Banchereau J (2013) Human dendritic cells subsets as targets and vectors for therapy. Ann N Y Acad Sci 1284:24–30. doi: 10.1111/nyas.12113 PubMedCrossRefGoogle Scholar
  200. Klein J (1986) Natural history of the major histocompatibility complex. WIley-Interscience, New YorkGoogle Scholar
  201. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721PubMedPubMedCentralCrossRefGoogle Scholar
  202. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585. doi: 10.1038/nm.3145 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Kolev M, Le Friec G, Kemper C (2014) Complement—tapping into new sites and effector systems. Nat Rev Immunol 14(12):811–820. doi: 10.1038/nri3761 PubMedCrossRefGoogle Scholar
  204. Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D (2015) Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog 11(3):e1004651. doi: 10.1371/journal.ppat.1004651 PubMedPubMedCentralCrossRefGoogle Scholar
  205. Kuek A, Hazleman BL, Ostor AJ (2007) Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad Med J 83(978):251–260. doi: 10.1136/pgmj.2006.052688 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Kuhn H, O’Donnell VB (2006) Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res 45(4):334–356. doi: 10.1016/j.plipres.2006.02.003 PubMedCrossRefGoogle Scholar
  207. Kupper TS (2012) Old and new: recent innovations in vaccine biology and skin T cells. J Invest Dermatol 132(3 Pt 2):829–834. doi: 10.1038/jid.2011.400 PubMedPubMedCentralCrossRefGoogle Scholar
  208. Kushwah R, Hu J (2011) Complexity of dendritic cell subsets and their function in the host immune system. Immunology 133(4):409–419. doi: 10.1111/j.1365-2567.2011.03457.x PubMedPubMedCentralCrossRefGoogle Scholar
  209. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von Aulock S, Radek KA, Huang CM, Ryan AF, Gallo RL (2009) Commensal bacteria regulate toll-like receptor 3-dependent inflammation after skin injury. Nat Med 15(12):1377–1382. doi: 10.1038/nm.2062 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Lammermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W, Parent CA, Germain RN (2013) Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498(7454):371–375. doi: 10.1038/nature12175 PubMedCrossRefGoogle Scholar
  211. Lande R, Gilliet M (2010) Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Ann N Y Acad Sci 1183:89–103. doi: 10.1111/j.1749-6632.2009.05152.x PubMedCrossRefGoogle Scholar
  212. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185. doi: 10.1155/2014/149185 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R, Shagdarsuren E, Lira SA, Weissman IL, Weber C, Jung S (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113(4):963–972. doi: 10.1182/blood-2008-07-170787 PubMedCrossRefGoogle Scholar
  214. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411. doi: 10.1038/nri3452 PubMedCrossRefGoogle Scholar
  215. Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, Verma V, Kaur N, Nagpal R (2013) Anti-inflammatory treatments for chronic diseases: a review. Inflamm Allergy Drug Targets 12(5):349–361PubMedCrossRefGoogle Scholar
  216. Leach MW (2013) Regulatory forum opinion piece*: differences between protein-based biologic products (biotherapeutics) and chemical entities (small molecules) of relevance to the toxicologic pathologist. Toxicol Pathol 41(1):128–136PubMedCrossRefGoogle Scholar
  217. Leach MW, Rottman JB, Hock MB, Finco D, Rojko JL, Beyer JC (2014) Immunogenicity/hypersensitivity of biologics. Toxicol Pathol 42(1):293–300. doi: 10.1177/0192623313510987 PubMedCrossRefGoogle Scholar
  218. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315(5817):1398–1401. doi: 10.1126/science.1136880 PubMedCrossRefGoogle Scholar
  219. Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A (2010) In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32(2):227–239. doi: 10.1016/j.immuni.2009.12.006 PubMedPubMedCentralCrossRefGoogle Scholar
  220. Lefrancois L, Marzo AL (2006) The descent of memory T-cell subsets. Nat Rev Immunol 6(8):618–623. doi: 10.1038/nri1866 PubMedCrossRefGoogle Scholar
  221. Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111(3):333–340. doi: 10.1172/JCI15555 PubMedPubMedCentralCrossRefGoogle Scholar
  222. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7(10):767–777PubMedCrossRefGoogle Scholar
  223. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323–335PubMedPubMedCentralCrossRefGoogle Scholar
  224. Lewis MJ, Botto M (2006) Complement deficiencies in humans and animals: links to autoimmunity. Autoimmunity 39(5):367–378. doi: 10.1080/08916930600739233 PubMedCrossRefGoogle Scholar
  225. Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, Cheung VG (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333(6038):53–58. doi: 10.1126/science.1207018 PubMedPubMedCentralCrossRefGoogle Scholar
  226. Lim JP, Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89(8):836–843. doi: 10.1038/icb.2011.20 PubMedCrossRefGoogle Scholar
  227. Lim K, Hyun YM, Lambert-Emo K, Capece T, Bae S, Miller R, Topham DJ, Kim M (2015) Neutrophil trails guide influenza-specific CD8(+) T cells in the airways. Science 349(6252):aaa4352. doi: 10.1126/science.aaa4352 PubMedPubMedCentralCrossRefGoogle Scholar
  228. Lin CH, Hunig T (2003) Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur J Immunol 33(3):626–638. doi: 10.1002/eji.200323570 PubMedCrossRefGoogle Scholar
  229. Ling YM, Shaw MH, Ayala C, Coppens I, Taylor GA, Ferguson DJ, Yap GS (2006) Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J Exp Med 203(9):2063–2071. doi: 10.1084/jem.20061318 PubMedPubMedCentralCrossRefGoogle Scholar
  230. Liszewski MK, Kolev M, Le Friec G, Leung M, Bertram PG, Fara AF, Subias M, Pickering MC, Drouet C, Meri S, Arstila TP, Pekkarinen PT, Ma M, Cope A, Reinheckel T, Rodriguez de Cordoba S, Afzali B, Atkinson JP, Kemper C (2013) Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity 39(6):1143–1157. doi: 10.1016/j.immuni.2013.10.018 PubMedPubMedCentralCrossRefGoogle Scholar
  231. Liu JK (2014) The history of monoclonal antibody development—progress, remaining challenges and future innovations. Ann Med Surg (Lond) 3(4):113–116. doi: 10.1016/j.amsu.2014.09.001 CrossRefGoogle Scholar
  232. Liu L, Guo X, Rao JN, Zou T, Xiao L, Yu T, Timmons JA, Turner DJ, Wang JY (2009) Polyamines regulate E-cadherin transcription through c-Myc modulating intestinal epithelial barrier function. Am J Physiol Cell Physiol 296(4):C801–C810. doi: 10.1152/ajpcell.00620.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  233. Liu L, Zhong Q, Tian T, Dubin K, Athale SK, Kupper TS (2010) Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat Med 16(2):224–227. doi: 10.1038/nm.2078 PubMedPubMedCentralCrossRefGoogle Scholar
  234. Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, Stiles JK (2011) CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 22(3):121–130. doi: 10.1016/j.cytogfr.2011.06.001 PubMedPubMedCentralGoogle Scholar
  235. Lucas CL, Lenardo MJ (2015) Identifying genetic determinants of autoimmunity and immune dysregulation. Curr Opin Immunol 37:28–33. doi: 10.1016/j.coi.2015.09.001 PubMedCrossRefGoogle Scholar
  236. Lucas AD, Chadwick N, Warren BF, Jewell DP, Gordon S, Powrie F, Greaves DR (2001) The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo. Am J Pathol 158(3):855–866. doi: 10.1016/S0002-9440(10)64034-5 PubMedPubMedCentralCrossRefGoogle Scholar
  237. Lucas AD, Bursill C, Guzik TJ, Sadowski J, Channon KM, Greaves DR (2003) Smooth muscle cells in human atherosclerotic plaques express the fractalkine receptor CX3CR1 and undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1). Circulation 108(20):2498–2504. doi: 10.1161/01.CIR.0000097119.57756.EF PubMedCrossRefGoogle Scholar
  238. Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K, Kollet O, Kalinkovich A, Porat Z, D’Uva G, Schajnovitz A, Voronov E, Brenner DA, Apte RN, Jung S, Lapidot T (2012) Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 13(11):1072–1082. doi: 10.1038/ni.2408 PubMedCrossRefGoogle Scholar
  239. Ludwig A, Berkhout T, Moores K, Groot P, Chapman G (2002) Fractalkine is expressed by smooth muscle cells in response to IFN-gamma and TNF-alpha and is modulated by metalloproteinase activity. J Immunol 168(2):604–612PubMedCrossRefGoogle Scholar
  240. Macallan DC, Asquith B, Irvine AJ, Wallace DL, Worth A, Ghattas H, Zhang Y, Griffin GE, Tough DF, Beverley PC (2003) Measurement and modeling of human T cell kinetics. Eur J Immunol 33(8):2316–2326. doi: 10.1002/eji.200323763 PubMedCrossRefGoogle Scholar
  241. Macallan DC, Wallace D, Zhang Y, De Lara C, Worth AT, Ghattas H, Griffin GE, Beverley PC, Tough DF (2004) Rapid turnover of effector-memory CD4(+) T cells in healthy humans. J Exp Med 200(2):255–260. doi: 10.1084/jem.20040341 PubMedPubMedCentralCrossRefGoogle Scholar
  242. Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406PubMedPubMedCentralCrossRefGoogle Scholar
  243. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN, Heath WR, Carbone FR, Gebhardt T (2012) Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc Natl Acad Sci U S A 109(18):7037–7042. doi: 10.1073/pnas.1202288109 PubMedPubMedCentralCrossRefGoogle Scholar
  244. Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3(9):733–744. doi: 10.1038/nri1183 PubMedCrossRefGoogle Scholar
  245. Maizels RM, Pearce EJ, Artis D, Yazdanbakhsh M, Wynn TA (2009) Regulation of pathogenesis and immunity in helminth infections. J Exp Med 206(10):2059–2066. doi: 10.1084/jem.20091903 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Malissen B, Tamoutounour S, Henri S (2014) The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 14(6):417–428. doi: 10.1038/nri3683 PubMedCrossRefGoogle Scholar
  247. Mamdouh Z, Chen X, Pierini LM, Maxfield FR, Muller WA (2003) Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 421(6924):748–753. doi: 10.1038/nature01300 PubMedCrossRefGoogle Scholar
  248. Mantovani A, Bonecchi R, Locati M (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6(12):907–918. doi: 10.1038/nri1964 PubMedCrossRefGoogle Scholar
  249. Manz RA, Thiel A, Radbruch A (1997) Lifetime of plasma cells in the bone marrow. Nature 388(6638):133–134. doi: 10.1038/40540 PubMedCrossRefGoogle Scholar
  250. Manz RA, Lohning M, Cassese G, Thiel A, Radbruch A (1998) Survival of long-lived plasma cells is independent of antigen. Int Immunol 10(11):1703–1711PubMedCrossRefGoogle Scholar
  251. Margulies DH, Natarajan K, Rossjohn J, McCluskey J (2013) The major histocompatibility complex and its proteins. In: Paul WE (ed) Fundamental immunology. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp. 487–523Google Scholar
  252. Martinet L, Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15(4):243–254. doi: 10.1038/nri3799 PubMedCrossRefGoogle Scholar
  253. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. doi:10.12703/P6–13Google Scholar
  254. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265. doi: 10.1146/annurev.immunol.021908.132715 PubMedCrossRefGoogle Scholar
  255. Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291(5512):2413–2417. doi: 10.1126/science.1058867 PubMedCrossRefGoogle Scholar
  256. Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J, Akondy R, Wang J, Casey KA, Barber DL, Kawamura KS, Fraser KA, Webby RJ, Brinkmann V, Butcher EC, Newell KA, Ahmed R (2010) Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med 207(3):553–564. doi: 10.1084/jem.20090858 PubMedPubMedCentralCrossRefGoogle Scholar
  257. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015 PubMedCrossRefGoogle Scholar
  258. Mayadas TN, Cullere X, Lowell CA (2014) The multifaceted functions of neutrophils. Annu Rev Pathol 9:181–218. doi: 10.1146/annurev-pathol-020712-164023 PubMedCrossRefGoogle Scholar
  259. Mayilyan KR (2012) Complement genetics, deficiencies, and disease associations. Protein Cell 3(7):487–496. doi: 10.1007/s13238-012-2924-6 PubMedPubMedCentralCrossRefGoogle Scholar
  260. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118. doi: 10.1016/j.cell.2005.05.007 PubMedCrossRefGoogle Scholar
  261. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–625. doi: 10.1038/nature07008 PubMedCrossRefGoogle Scholar
  262. McCormick PJ, Martina JA, Bonifacino JS (2005) Involvement of clathrin and AP-2 in the trafficking of MHC class II molecules to antigen-processing compartments. Proc Natl Acad Sci U S A 102(22):7910–7915. doi: 10.1073/pnas.0502206102 PubMedPubMedCentralCrossRefGoogle Scholar
  263. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A (2015) Type I interferons in infectious disease. Nat Rev Immunol 15(2):87–103. doi: 10.1038/nri3787 PubMedCrossRefGoogle Scholar
  264. Medzhitov R (2009) Approaching the asymptote: 20 years later. Immunity 30(6):766–775. doi: 10.1016/j.immuni.2009.06.004 PubMedCrossRefGoogle Scholar
  265. Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300. doi: 10.1126/science.1068883 PubMedCrossRefGoogle Scholar
  266. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489. doi: 10.1038/nature10673 PubMedPubMedCentralCrossRefGoogle Scholar
  267. Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu F, Xiao Z (2006) Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 211:81–92. doi: 10.1111/j.0105-2896.2006.00382.x PubMedCrossRefGoogle Scholar
  268. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC, Schell MJ, Sondak VK, Weber JS, Mule JJ (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2:765. doi: 10.1038/srep00765 PubMedPubMedCentralCrossRefGoogle Scholar
  269. Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427(21):3389–3406. doi: 10.1016/j.jmb.2015.06.020 PubMedCrossRefGoogle Scholar
  270. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the TH1/TH2 paradigm. J Immunol 164(12):6166–6173Google Scholar
  271. Mitchison NA (2004) T-cell-B-cell cooperation. Nat Rev Immunol 4(4):308–312. doi: 10.1038/nri1334 PubMedCrossRefGoogle Scholar
  272. Mittrucker HW, Visekruna A, Huber M (2014) Heterogeneity in the differentiation and function of CD8(+) T cells. Arch Immunol Ther Exp (Warsz) 62(6):449–458. doi: 10.1007/s00005-014-0293-y CrossRefGoogle Scholar
  273. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. doi: 10.1038/nature06639 PubMedPubMedCentralCrossRefGoogle Scholar
  274. Monack DM, Mueller A, Falkow S (2004) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2(9):747–765. doi: 10.1038/nrmicro955 PubMedCrossRefGoogle Scholar
  275. Morgan BP (2000) The complement system: an overview. Methods Mol Biol 150:1–13. doi: 10.1385/1-59259-056-X:1 PubMedGoogle Scholar
  276. Morgan BP, Gasque P (1997) Extrahepatic complement biosynthesis: where, when and why? Clin Exp Immunol 107(1):1–7PubMedPubMedCentralCrossRefGoogle Scholar
  277. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25(2):75–84. doi: 10.1016/j.it.2003.12.005 PubMedCrossRefGoogle Scholar
  278. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173. doi: 10.1146/annurev.iy.07.040189.001045
  279. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357PubMedGoogle Scholar
  280. Motz GT, Coukos G (2013) Deciphering and reversing tumor immune suppression. Immunity 39(1):61–73. doi: 10.1016/j.immuni.2013.07.005 PubMedPubMedCentralCrossRefGoogle Scholar
  281. Moynagh PN (2005) TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol 26(9):469–476. doi: 10.1016/j.it.2005.06.009 PubMedCrossRefGoogle Scholar
  282. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG (2015) The infant microbiome development: mom matters. Trends Mol Med 21(2):109–117. doi: 10.1016/j.molmed.2014.12.002 PubMedCrossRefGoogle Scholar
  283. Muller WA (2011) Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 6:323–344. doi: 10.1146/annurev-pathol-011110-130224 PubMedPubMedCentralCrossRefGoogle Scholar
  284. Muller WA (2013) Getting leukocytes to the site of inflammation. Vet Pathol 50(1):7–22PubMedPubMedCentralCrossRefGoogle Scholar
  285. Nagaraj S, Youn JI, Gabrilovich DI (2013) Reciprocal relationship between myeloid-derived suppressor cells and T cells. J Immunol 191(1):17–23. doi: 10.4049/jimmunol.1300654 PubMedPubMedCentralCrossRefGoogle Scholar
  286. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y (2012) Compartmentalized control of skin immunity by resident commensals. Science 337(6098):1115–1119. doi: 10.1126/science.1225152 PubMedPubMedCentralCrossRefGoogle Scholar
  287. Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, Conlan S, Himmelfarb S, Byrd AL, Deming C, Quinones M, Brenchley JM, Kong HH, Tussiwand R, Murphy KM, Merad M, Segre JA, Belkaid Y (2015) Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520(7545):104–108. doi: 10.1038/nature14052 PubMedPubMedCentralCrossRefGoogle Scholar
  288. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182. doi: 10.1038/nri1785 PubMedCrossRefGoogle Scholar
  289. Nathan CF, Murray HW, Wiebe ME, Rubin BY (1983) Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158(3):670–689PubMedCrossRefGoogle Scholar
  290. Naughton MA, Botto M, Carter MJ, Alexander GJ, Goldman JM, Walport MJ (1996) Extrahepatic secreted complement C3 contributes to circulating C3 levels in humans. J Immunol 156(8):3051–3056PubMedGoogle Scholar
  291. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455(7211):396–400. doi: 10.1038/nature07208 PubMedCrossRefGoogle Scholar
  292. Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836. doi: 10.1038/nri3084 PubMedGoogle Scholar
  293. Nelson AL, Reichert JM (2009) Development trends for therapeutic antibody fragments. Nat Biotechnol 27(4):331–337. doi: 10.1038/nbt0409-331 PubMedCrossRefGoogle Scholar
  294. Netzer N, Goodenbour JM, David A, Dittmar KA, Jones RB, Schneider JR, Boone D, Eves EM, Rosner MR, Gibbs JS, Embry A, Dolan B, Das S, Hickman HD, Berglund P, Bennink JR, Yewdell JW, Pan T (2009) Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462(7272):522–526. doi: 10.1038/nature08576 PubMedPubMedCentralCrossRefGoogle Scholar
  295. Nikolich-Zugich J, Rudd BD (2010) Immune memory and aging: an infinite or finite resource? Curr Opin Immunol 22(4):535–540. doi: 10.1016/j.coi.2010.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  296. Nomiyama H, Osada N, Yoshie O (2011) A family tree of vertebrate chemokine receptors for a unified nomenclature. Dev Comp Immunol 35(7):705–715. doi: 10.1016/j.dci.2011.01.019 PubMedCrossRefGoogle Scholar
  297. Nonaka M, Yoshizaki F (2004) Evolution of the complement system. Mol Immunol 40(12):897–902PubMedCrossRefGoogle Scholar
  298. Norris PC, Reichart D, Dumlao DS, Glass CK, Dennis EA (2011) Specificity of eicosanoid production depends on the TLR-4-stimulated macrophage phenotype. J Leukoc Biol 90(3):563–574. doi: 10.1189/jlb.0311153 PubMedPubMedCentralCrossRefGoogle Scholar
  299. Norris PC, Gosselin D, Reichart D, Glass CK, Dennis EA (2014) Phospholipase A2 regulates eicosanoid class switching during inflammasome activation. Proc Natl Acad Sci U S A 111(35):12746–12751. doi: 10.1073/pnas.1404372111 PubMedPubMedCentralCrossRefGoogle Scholar
  300. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, Wang YH, Dong C (2009) Bcl6 mediates the development of T follicular helper cells. Science 325(5943):1001–1005. doi: 10.1126/science.1176676 PubMedPubMedCentralCrossRefGoogle Scholar
  301. O’Brien TR, Prokunina-Olsson L, Donnelly RP (2014) IFN-lambda4: the paradoxical new member of the interferon lambda family. J Interferon Cytokine Res 34(11):829–838. doi: 10.1089/jir.2013.0136 PubMedPubMedCentralCrossRefGoogle Scholar
  302. O’Shea JJ (2013) Helper T-cell differentiation and plasticity. In: Paul WE (ed) Fundamental immunology. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp. 708–717Google Scholar
  303. O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327(5969):1098–1102. doi: 10.1126/science.1178334 PubMedPubMedCentralCrossRefGoogle Scholar
  304. O’Shea JJ, Ma A, Lipsky P (2002) Cytokines and autoimmunity. Nat Rev Immunol 2(1):37–45. doi: 10.1038/nri702 PubMedCrossRefGoogle Scholar
  305. Oestreich KJ, Weinmann AS (2012) Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nat Rev Immunol 12(11):799–804. doi: 10.1038/nri3321 PubMedPubMedCentralCrossRefGoogle Scholar
  306. Oh J, Conlan S, Polley EC, Segre JA, Kong HH (2012) Shifts in human skin and nares microbiota of healthy children and adults. Genome Med 4(10):77. doi: 10.1186/gm378 PubMedPubMedCentralCrossRefGoogle Scholar
  307. Ohman T, Teirila L, Lahesmaa-Korpinen AM, Cypryk W, Veckman V, Saijo S, Wolff H, Hautaniemi S, Nyman TA, Matikainen S (2014) Dectin-1 pathway activates robust autophagy-dependent unconventional protein secretion in human macrophages. J Immunol 192(12):5952–5962. doi: 10.4049/jimmunol.1303213 PubMedCrossRefGoogle Scholar
  308. Ohresser M, Olive D, Vanhove B, Watier H (2006) Risk in drug trials. Lancet 368(9554):2205–2206. doi: 10.1016/S0140-6736(06)69883-8 PubMedCrossRefGoogle Scholar
  309. Onishi RM, Gaffen SL (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129(3):311–321. doi: 10.1111/j.1365-2567.2009.03240.x PubMedPubMedCentralCrossRefGoogle Scholar
  310. Ostrand-Rosenberg S, Sinha P, Chornoguz O, Ecker C (2012) Regulating the suppressors: apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). Cancer Immunol Immunother, CII 61(8):1319–1325. doi: 10.1007/s00262-012-1269-6 PubMedCrossRefGoogle Scholar
  311. Owen JA, Punt J, Stranford SA, Jones PP (2013) Receptors and signaling: B and T-cell receptors. In: Kuby immunology, 7th edn. W. H. Freeman and Company, New York, pp. 65–103Google Scholar
  312. Pace JL, Russell SW, Schreiber RD, Altman A, Katz DH (1983) Macrophage activation: priming activity from a T-cell hybridoma is attributable to interferon-gamma. Proc Natl Acad Sci U S A 80(12):3782–3786PubMedPubMedCentralCrossRefGoogle Scholar
  313. Palucka K, Banchereau J (2013) Dendritic-cell-based therapeutic cancer vaccines. Immunity 39(1):38–48. doi: 10.1016/j.immuni.2013.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  314. Pang B, Neijssen J, Qiao X, Janssen L, Janssen H, Lippuner C, Neefjes J (2009) Direct antigen presentation and gap junction mediated cross-presentation during apoptosis. J Immunol 183(2):1083–1090. doi: 10.4049/jimmunol.0900861 PubMedCrossRefGoogle Scholar
  315. Pape KA, Catron DM, Itano AA, Jenkins MK (2007) The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26(4):491–502. doi: 10.1016/j.immuni.2007.02.011 PubMedCrossRefGoogle Scholar
  316. Pasparakis M, Haase I, Nestle FO (2014) Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14(5):289–301. doi: 10.1038/nri3646 PubMedCrossRefGoogle Scholar
  317. Pawelec G, Goldeck D, Derhovanessian E (2014) Inflammation, ageing and chronic disease. Curr Opin Immunol 29:23–28. doi: 10.1016/j.coi.2014.03.007 PubMedCrossRefGoogle Scholar
  318. Peerschke EI, Petrovan RJ, Ghebrehiwet B, Ruf W (2004) Tissue factor pathway inhibitor-2 (TFPI-2) recognizes the complement and kininogen binding protein gC1qR/p33 (gC1qR): implications for vascular inflammation. Thromb Haemost 92(4):811–819. doi: 10.1267/THRO04040811 PubMedGoogle Scholar
  319. Pei Y, Yeo Y (2015) Drug delivery to macrophages: challenges and opportunities. J Control Release. doi: 10.1016/j.jconrel.2015.12.014 Google Scholar
  320. Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Rooijen N, Comeau MR, Pearce EJ, Laufer TM, Artis D (2009) MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10(7):697–705. doi: 10.1038/ni.1740 PubMedPubMedCentralCrossRefGoogle Scholar
  321. Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32. doi: 10.1111/j.0105-2896.2004.00204.x PubMedCrossRefGoogle Scholar
  322. Philpott DJ, Girardin SE (2004) The role of Toll-like receptors and Nod proteins in bacterial infection. Mol Immunol 41(11):1099–1108. doi: 10.1016/j.molimm.2004.06.012 PubMedCrossRefGoogle Scholar
  323. PrabhuDas M, Adkins B, Gans H, King C, Levy O, Ramilo O, Siegrist CA (2011) Challenges in infant immunity: implications for responses to infection and vaccines. Nat Immunol 12(3):189–194. doi: 10.1038/ni0311-189 PubMedCrossRefGoogle Scholar
  324. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F, Astemborski J, Bonkovsky HL, Edlin BR, Howell CD, Morgan TR, Thomas DL, Rehermann B, Donnelly RP, O’Brien TR (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 45(2):164–171. doi: 10.1038/ng.2521 PubMedPubMedCentralCrossRefGoogle Scholar
  325. Proudfoot AE, Power CA, Schwarz MK (2010) Anti-chemokine small molecule drugs: a promising future? Expert Opin Investig Drugs 19(3):345–355. doi: 10.1517/13543780903535867 PubMedCrossRefGoogle Scholar
  326. Pruenster M, Rot A (2006) Throwing light on DARC. Biochem Soc Trans 34(Pt 6):1005–1008. doi: 10.1042/BST0341005 PubMedCrossRefGoogle Scholar
  327. Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC (2013) Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154(6):1285–1299. doi: 10.1016/j.cell.2013.08.044 PubMedPubMedCentralCrossRefGoogle Scholar
  328. Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS (2011) Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity. PLoS One 6(1):e16245. doi: 10.1371/journal.pone.0016245 PubMedPubMedCentralCrossRefGoogle Scholar
  329. Qi H, Egen JG, Huang AY, Germain RN (2006) Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312(5780):1672–1676. doi: 10.1126/science.1125703 PubMedCrossRefGoogle Scholar
  330. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60. doi: 10.1038/nature11450 PubMedCrossRefGoogle Scholar
  331. Ramani T, Auletta CS, Weinstock D, Mounho-Zamora B, Ryan PC, Salcedo TW, Bannish G (2015) Cytokines: the good, the bad, and the deadly. Int J Toxicol 34(4):355–365. doi: 10.1177/1091581815584918 PubMedCrossRefGoogle Scholar
  332. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172PubMedCrossRefGoogle Scholar
  333. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150(3):606–619. doi: 10.1016/j.cell.2012.07.007 PubMedPubMedCentralCrossRefGoogle Scholar
  334. Raveche ES, Schutzer SE, Fernandes H, Bateman H, McCarthy BA, Nickell SP, Cunningham MW (2005) Evidence of Borrelia autoimmunity-induced component of Lyme carditis and arthritis. J Clin Microbiol 43(2):850–856. doi: 10.1128/JCM.43.2.850-856.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  335. Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35(4):445–455. doi: 10.1016/j.immuni.2011.09.004 PubMedPubMedCentralCrossRefGoogle Scholar
  336. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK (2001) Visualizing the generation of memory CD4 T cells in the whole body. Nature 410(6824):101–105. doi: 10.1038/35065111 PubMedCrossRefGoogle Scholar
  337. Remakus S, Sigal LJ (2013) Memory CD8(+) T cell protection. Adv Exp Med Biol 785:77–86. doi: 10.1007/978-1-4614-6217-0_9 PubMedCrossRefGoogle Scholar
  338. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9):785–797. doi: 10.1038/ni.1923 PubMedPubMedCentralCrossRefGoogle Scholar
  339. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14(3):195–208. doi: 10.1038/nri3622 PubMedPubMedCentralCrossRefGoogle Scholar
  340. Roberts N, Horsley V (2014) Developing stratified epithelia: lessons from the epidermis and thymus. Wiley Interdiscip Rev Dev Biol 3(6):389–402. doi: 10.1002/wdev.146 PubMedPubMedCentralCrossRefGoogle Scholar
  341. Roche PA, Cresswell P (1990) Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature 345(6276):615–618. doi: 10.1038/345615a0 PubMedCrossRefGoogle Scholar
  342. Roche PA, Furuta K (2015) The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15(4):203–216. doi: 10.1038/nri3818 PubMedCrossRefGoogle Scholar
  343. Rock K, Benacerraf B, Abbas A (1984) Antigen presentation by hapten-specific b lymphocytes. I Role of surface immunoglobulin receptors. J Exp Med 160:1102–1113PubMedCrossRefGoogle Scholar
  344. Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191. doi: 10.1111/j.1600-065X.2008.00608.x PubMedPubMedCentralCrossRefGoogle Scholar
  345. Rodriguez-Palmero M, Franch A, Castell M, Pelegri C, Perez-Cano FJ, Kleinschnitz C, Stoll G, Hunig T, Castellote C (2006) Effective treatment of adjuvant arthritis with a stimulatory CD28-specific monoclonal antibody. J Rheumatol 33(1):110–118PubMedGoogle Scholar
  346. Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11(4):275–288. doi: 10.1038/nri2939 PubMedCrossRefGoogle Scholar
  347. Romieu-Mourez R, Francois M, Boivin MN, Stagg J, Galipeau J (2007) Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J Immunol 179(3):1549–1558PubMedCrossRefGoogle Scholar
  348. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352. doi: 10.1038/nri.2016.42 PubMedCrossRefGoogle Scholar
  349. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332(6032):974–977. doi: 10.1126/science.1206095 PubMedPubMedCentralCrossRefGoogle Scholar
  350. Rouse BT, Sehrawat S (2010) Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol 10(7):514–526. doi: 10.1038/nri2802 PubMedPubMedCentralCrossRefGoogle Scholar
  351. Rudd CE, Schneider H (2003) Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat Rev Immunol 3(7):544–556. doi: 10.1038/nri1131 PubMedCrossRefGoogle Scholar
  352. Rudd CE, Taylor A, Schneider H (2009) CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229(1):12–26. doi: 10.1111/j.1600-065X.2009.00770.x PubMedPubMedCentralCrossRefGoogle Scholar
  353. Saccheri F, Pozzi C, Avogadri F, Barozzi S, Faretta M, Fusi P, Rescigno M (2010) Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci Transl Med 2(44):44ra57. doi: 10.1126/scitranslmed.3000739 PubMedCrossRefGoogle Scholar
  354. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712. doi: 10.1038/44385 PubMedCrossRefGoogle Scholar
  355. Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220(4597):568–575PubMedCrossRefGoogle Scholar
  356. Sanders ME, Makgoba MW, Sharrow SO, Stephany D, Springer TA, Young HA, Shaw S (1988) Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol 140(5):1401–1407PubMedGoogle Scholar
  357. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450(7173):1253–1257. doi: 10.1038/nature06421 PubMedCrossRefGoogle Scholar
  358. Sarma JV, Ward PA (2011) The complement system. Cell Tissue Res 343(1):227–235. doi: 10.1007/s00441-010-1034-0 PubMedCrossRefGoogle Scholar
  359. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL, Lerner H, Goldstein M, Sykes M, Kato T, Farber DL (2013) Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38(1):187–197. doi: 10.1016/j.immuni.2012.09.020 PubMedCrossRefGoogle Scholar
  360. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M (2006) Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev 127(3):274–281. doi: 10.1016/j.mad.2005.11.001 PubMedCrossRefGoogle Scholar
  361. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202. doi: 10.7554/eLife.01202 PubMedPubMedCentralCrossRefGoogle Scholar
  362. Schmid D, Dengjel J, Schoor O, Stevanovic S, Munz C (2006) Autophagy in innate and adaptive immunity against intracellular pathogens. J Mol Med 84(3):194–202. doi: 10.1007/s00109-005-0014-4 PubMedCrossRefGoogle Scholar
  363. Schmid D, Pypaert M, Munz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26(1):79–92. doi: 10.1016/j.immuni.2006.10.018 PubMedCrossRefGoogle Scholar
  364. Schmitt N, Ueno H (2015) Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol 34:130–136. doi: 10.1016/j.coi.2015.03.007 PubMedPubMedCentralCrossRefGoogle Scholar
  365. Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101. doi: 10.1016/S0065-2776(07)96002-2 PubMedCrossRefGoogle Scholar
  366. Schonefuss A, Wendt W, Schattling B, Schulten R, Hoffmann K, Stuecker M, Tigges C, Lubbert H, Stichel C (2010) Upregulation of cathepsin S in psoriatic keratinocytes. Exp Dermatol 19(8):e80–e88. doi: 10.1111/j.1600-0625.2009.00990.x PubMedCrossRefGoogle Scholar
  367. Schroeder HW, Wald D, Greenspan NS (2013) Immunoglobulins: structure and function. In: Paul WE (ed) Fundamental immunology. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp. 129–149Google Scholar
  368. Schwartz-Albiez R, Monteiro RC, Rodriguez M, Binder CJ, Shoenfeld Y (2009) Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin Exp Immunol 158(Suppl 1):43–50. doi: 10.1111/j.1365-2249.2009.04026.x PubMedPubMedCentralCrossRefGoogle Scholar
  369. Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S (2014) Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344(6188):1164–1168. doi: 10.1126/science.1252809 PubMedCrossRefGoogle Scholar
  370. Seledtsov VI, Goncharov AG, Seledtsova GV (2015) Clinically feasible approaches to potentiating cancer cell-based immunotherapies. Hum Vaccin Immunother 11(4):851–869. doi: 10.1080/21645515.2015.1009814 PubMedPubMedCentralCrossRefGoogle Scholar
  371. Selin LK, Varga SM, Wong IC, Welsh RM (1998) Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J Exp Med 188(9):1705–1715PubMedPubMedCentralCrossRefGoogle Scholar
  372. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3):337–340. doi: 10.1016/j.cell.2016.01.013 PubMedCrossRefGoogle Scholar
  373. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16(1):53–65. doi: 10.1016/j.semcancer.2005.07.005 PubMedCrossRefGoogle Scholar
  374. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101. doi: 10.1038/nature13479 PubMedPubMedCentralCrossRefGoogle Scholar
  375. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61. doi: 10.1126/science.aaa8172 PubMedCrossRefGoogle Scholar
  376. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2(2):116–126. doi: 10.1038/nri727 PubMedCrossRefGoogle Scholar
  377. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192. doi: 10.1038/nature13683 PubMedGoogle Scholar
  378. Shin H, Iwasaki A (2012) A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491(7424):463–467. doi: 10.1038/nature11522 PubMedPubMedCentralCrossRefGoogle Scholar
  379. Sijts EJ, Kloetzel PM (2011) The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci, CMLS 68(9):1491–1502. doi: 10.1007/s00018-011-0657-y PubMedCrossRefGoogle Scholar
  380. Silke J, Rickard JA, Gerlic M (2015) The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 16(7):689–697. doi: 10.1038/ni.3206 PubMedCrossRefGoogle Scholar
  381. Siracusa MC, Comeau MR, Artis D (2011) New insights into basophil biology: initiators, regulators, and effectors of type 2 inflammation. Ann N Y Acad Sci 1217:166–177. doi: 10.1111/j.1749-6632.2010.05918.x PubMedPubMedCentralCrossRefGoogle Scholar
  382. Slifka MK, Antia R, Whitmire JK, Ahmed R (1998) Humoral immunity due to long-lived plasma cells. Immunity 8(3):363–372PubMedCrossRefGoogle Scholar
  383. Smith SH, Brown MH, Rowe D, Callard RE, Beverley PC (1986) Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology 58(1):63–70PubMedPubMedCentralGoogle Scholar
  384. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182. doi: 10.1146/annurev.biochem.69.1.145 PubMedCrossRefGoogle Scholar
  385. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339(6119):548–554. doi: 10.1126/science.1229000 PubMedPubMedCentralCrossRefGoogle Scholar
  386. Snyder P (2007) Diseases of immunity. In: McGavin MD, Zachary JF (eds) Pathologic basis of veterinary disease. Mosby Elsevier, St Louis, pp. 193–251Google Scholar
  387. Snyder PW (2012) Immunology for the toxicologic pathologist. Toxicol Pathol 40(2):143–147PubMedCrossRefGoogle Scholar
  388. Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10(7):713–720. doi: 10.1038/ni.1738 PubMedPubMedCentralCrossRefGoogle Scholar
  389. Sozzani S, Abbracchio MP, Annese V, Danese S, De Pita O, De Sarro G, Maione S, Olivieri I, Parodi A, Sarzi-Puttini P (2014) Chronic inflammatory diseases: do immunological patterns drive the choice of biotechnology drugs? A critical review. Autoimmunity 47(5):287–306. doi: 10.3109/08916934.2014.897333 PubMedCrossRefGoogle Scholar
  390. Stebbings R, Findlay L, Edwards C, Eastwood D, Bird C, North D, Mistry Y, Dilger P, Liefooghe E, Cludts I, Fox B, Tarrant G, Robinson J, Meager T, Dolman C, Thorpe SJ, Bristow A, Wadhwa M, Thorpe R, Poole S (2007) “Cytokine storm” in the phase I trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J Immunol 179(5):3325–3331PubMedCrossRefGoogle Scholar
  391. Steere AC, Gross D, Meyer AL, Huber BT (2001) Autoimmune mechanisms in antibiotic treatment-resistant lyme arthritis. J Autoimmun 16(3):263–268. doi: 10.1006/jaut.2000.0495 PubMedCrossRefGoogle Scholar
  392. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292PubMedCrossRefGoogle Scholar
  393. Steinman RM (2006) Linking innate to adaptive immunity through dendritic cells. Novartis Found Symp 279:101–109; discussion 109–113, 216–109Google Scholar
  394. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426. doi: 10.1038/nature06175 PubMedCrossRefGoogle Scholar
  395. Stone KD, Prussin C, Metcalfe DD (2010) IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125(2 Suppl 2):S73–S80. doi: 10.1016/j.jaci.2009.11.017 PubMedPubMedCentralCrossRefGoogle Scholar
  396. Strainic MG, Liu J, Huang D, An F, Lalli PN, Muqim N, Shapiro VS, Dubyak GR, Heeger PS, Medof ME (2008) Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28(3):425–435. doi: 10.1016/j.immuni.2008.02.001 PubMedPubMedCentralCrossRefGoogle Scholar
  397. Strobel S, Miller HR, Ferguson A (1981) Human intestinal mucosal mast cells: evaluation of fixation and staining techniques. J Clin Pathol 34(8):851–858PubMedPubMedCentralCrossRefGoogle Scholar
  398. Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22(5):539–550. doi: 10.1016/j.immuni.2005.05.002 PubMedCrossRefGoogle Scholar
  399. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–186. doi: 10.1038/nature13793 PubMedGoogle Scholar
  400. Sun JC, Lanier LL (2011) NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol 11(10):645–657. doi: 10.1038/nri3044 PubMedPubMedCentralCrossRefGoogle Scholar
  401. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227. doi: 10.1016/j.cell.2011.11.031 PubMedCrossRefGoogle Scholar
  402. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028PubMedCrossRefGoogle Scholar
  403. Surh CD, Sprent J (1994) T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372(6501):100–103. doi: 10.1038/372100a0 PubMedCrossRefGoogle Scholar
  404. Suzuki K, Grigorova I, Phan TG, Kelly LM, Cyster JG (2009) Visualizing B cell capture of cognate antigen from follicular dendritic cells. J Exp Med 206(7):1485–1493. doi: 10.1084/jem.20090209 PubMedPubMedCentralCrossRefGoogle Scholar
  405. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941. doi: 10.1016/j.biopsych.2010.06.012 PubMedCrossRefGoogle Scholar
  406. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632. doi: 10.1038/nrm2952 PubMedCrossRefGoogle Scholar
  407. Tait SW, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 5(9). doi: 10.1101/cshperspect.a008706
  408. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16(1):3–9PubMedCrossRefGoogle Scholar
  409. Talekar M, Tran TH, Amiji M (2015) Translational nano-medicines: targeted therapeutic delivery for cancer and inflammatory diseases. AAPS J 17(4):813–827. doi: 10.1208/s12248-015-9772-2 PubMedPubMedCentralCrossRefGoogle Scholar
  410. Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W, Wang J, Wang X, Fu YX (2016) Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29(3):285–296. doi: 10.1016/j.ccell.2016.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  411. Tangye SG, Ma CS, Brink R, Deenick EK (2013) The good, the bad and the ugly—TFH cells in human health and disease. Nat Rev Immunol 13(6):412–426. doi: 10.1038/nri3447 PubMedCrossRefGoogle Scholar
  412. Tao R, de Zoeten EF, Ozkaynak E, Chen C, Wang L, Porrett PM, Li B, Turka LA, Olson EN, Greene MI, Wells AD, Hancock WW (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13(11):1299–1307. doi: 10.1038/nm1652 PubMedCrossRefGoogle Scholar
  413. Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro LA, Yang C, Emili A, Philpott DJ, Girardin SE (2012) Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11(6):563–575. doi: 10.1016/j.chom.2012.04.012 PubMedCrossRefGoogle Scholar
  414. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579. doi: 10.1038/nri855 PubMedGoogle Scholar
  415. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593. doi: 10.1038/nri2567 PubMedCrossRefGoogle Scholar
  416. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76(1):16–32. doi: 10.1128/MMBR.05015-11 PubMedPubMedCentralCrossRefGoogle Scholar
  417. Tobinai K, Takahashi T, Akinaga S (2012) Targeting chemokine receptor CCR4 in adult T-cell leukemia-lymphoma and other T-cell lymphomas. Curr Hematol Malig Rep 7(3):235–240. doi: 10.1007/s11899-012-0124-3 PubMedPubMedCentralCrossRefGoogle Scholar
  418. Tokoyoda K, Hauser AE, Nakayama T, Radbruch A (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10(3):193–200. doi: 10.1038/nri2727 PubMedCrossRefGoogle Scholar
  419. Tong PL, Roediger B, Kolesnikoff N, Biro M, Tay SS, Jain R, Shaw LE, Grimbaldeston MA, Weninger W (2015) The skin immune atlas: three-dimensional analysis of cutaneous leukocyte subsets by multiphoton microscopy. J Invest Dermatol 135(1):84–93. doi: 10.1038/jid.2014.289 PubMedCrossRefGoogle Scholar
  420. Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12(9):831–835. doi: 10.1038/ncb0910-831 PubMedCrossRefGoogle Scholar
  421. Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29(36):4828–4836. doi: 10.1200/JCO.2011.38.0899 PubMedPubMedCentralCrossRefGoogle Scholar
  422. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62. doi: 10.1038/ni.1823 PubMedCrossRefGoogle Scholar
  423. Travers J, Rothenberg ME (2015) Eosinophils in mucosal immune responses. Mucosal Immunol 8(3):464–475. doi: 10.1038/mi.2015.2 PubMedPubMedCentralCrossRefGoogle Scholar
  424. Tripathi SK, Lahesmaa R (2014) Transcriptional and epigenetic regulation of T-helper lineage specification. Immunol Rev 261(1):62–83. doi: 10.1111/imr.12204 PubMedPubMedCentralCrossRefGoogle Scholar
  425. Trollmo C, Meyer AL, Steere AC, Hafler DA, Huber BT (2001) Molecular mimicry in Lyme arthritis demonstrated at the single cell level: LFA-1 alpha L is a partial agonist for outer surface protein A-reactive T cells. J Immunol 166(8):5286–5291PubMedCrossRefGoogle Scholar
  426. Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 23:975–1028. doi: 10.1146/annurev.immunol.22.012703.104538 PubMedCrossRefGoogle Scholar
  427. Turner DL, Bickham KL, Thome JJ, Kim CY, D’Ovidio F, Wherry EJ, Farber DL (2014) Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol 7(3):501–510. doi: 10.1038/mi.2013.67 PubMedCrossRefGoogle Scholar
  428. Turowski P, Martinelli R, Crawford R, Wateridge D, Papageorgiou AP, Lampugnani MG, Gamp AC, Vestweber D, Adamson P, Dejana E, Greenwood J (2008) Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. J Cell Sci 121(Pt 1):29–37. doi: 10.1242/jcs.022681 PubMedCrossRefGoogle Scholar
  429. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V (2009) Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 9(4):470–481. doi: 10.1016/j.coph.2009.06.014 PubMedCrossRefGoogle Scholar
  430. Ulvmar MH, Hub E, Rot A (2011) Atypical chemokine receptors. Exp Cell Res 317(5):556–568. doi: 10.1016/j.yexcr.2011.01.012 PubMedPubMedCentralCrossRefGoogle Scholar
  431. Usami M, Kishimoto K, Ohata A, Miyoshi M, Aoyama M, Fueda Y, Kotani J (2008) Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res 28(5):321–328. doi: 10.1016/j.nutres.2008.02.012 PubMedCrossRefGoogle Scholar
  432. van der Waaij D, Berghuis-de Vries JM, L-v L (1971) Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond) 69(3):405–411CrossRefGoogle Scholar
  433. Vanderlugt CJ, Miller SD (1996) Epitope spreading. Curr Opin Immunol 8(6):831–836PubMedCrossRefGoogle Scholar
  434. Vanderlugt CL, Miller SD (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2(2):85–95. doi: 10.1038/nri724 PubMedCrossRefGoogle Scholar
  435. Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457. doi: 10.1146/annurev-immunol-020711-075032 PubMedCrossRefGoogle Scholar
  436. Villadangos JA, Young L (2008) Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29(3):352–361. doi: 10.1016/j.immuni.2008.09.002 PubMedCrossRefGoogle Scholar
  437. Vinkler M, Albercht T (2011) Phylogenty, longevity and evolution of adaptive immunity. Folia Zoologica 60(3):277–282Google Scholar
  438. von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3(11):867–878. doi: 10.1038/nri1222 CrossRefGoogle Scholar
  439. von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, van Rooijen N, Brown CR, Krantz BA, Leppla SH, Gronert K, Vance RE (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490(7418):107–111. doi: 10.1038/nature11351 CrossRefGoogle Scholar
  440. Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC, Akbar AN (2006) Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116(9):2423–2433. doi: 10.1172/JCI28941 PubMedPubMedCentralCrossRefGoogle Scholar
  441. Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation. Nat Rev Immunol 8(8):607–618. doi: 10.1038/nri2368 PubMedPubMedCentralCrossRefGoogle Scholar
  442. Wakim LM, Woodward-Davis A, Bevan MJ (2010) Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci U S A 107(42):17872–17879. doi: 10.1073/pnas.1010201107 PubMedPubMedCentralCrossRefGoogle Scholar
  443. Walport MJ (2001a) Complement. First of two parts. N Engl J Med 344(14):1058–1066. doi: 10.1056/NEJM200104053441406 PubMedCrossRefGoogle Scholar
  444. Walport MJ (2001b) Complement. Second of two parts. N Engl J Med 344(15):1140–1144. doi: 10.1056/NEJM200104123441506 PubMedCrossRefGoogle Scholar
  445. Wang S, Miura M, Jung Y, Zhu H, Gagliardini V, Shi L, Greenberg AH, Yuan J (1996) Identification and characterization of Ich-3, a member of the interleukin-1beta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J Biol Chem 271(34):20580–20587PubMedCrossRefGoogle Scholar
  446. Wang Q, McLoughlin RM, Cobb BA, Charrel-Dennis M, Zaleski KJ, Golenbock D, Tzianabos AO, Kasper DL (2006) A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J Exp Med 203(13):2853–2863. doi: 10.1084/jem.20062008 PubMedPubMedCentralCrossRefGoogle Scholar
  447. Wang A, Chandran S, Shah SA, Chiu Y, Paria BC, Aghamolla T, Alvarez-Downing MM, Lee CC, Singh S, Li T, Dudley ME, Restifo NP, Rosenberg SA, Kammula US (2012a) The stoichiometric production of IL-2 and IFN-gamma mRNA defines memory T cells that can self-renew after adoptive transfer in humans. Sci Transl Med 4(149):149ra120. doi: 10.1126/scitranslmed.3004306 PubMedCrossRefGoogle Scholar
  448. Wang Z, Jiang H, Chen S, Du F, Wang X (2012b) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1–2):228–243. doi: 10.1016/j.cell.2011.11.030 PubMedCrossRefGoogle Scholar
  449. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014a) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54(1):133–146. doi: 10.1016/j.molcel.2014.03.003 PubMedCrossRefGoogle Scholar
  450. Wang Y, Begum-Haque S, Telesford KM, Ochoa-Reparaz J, Christy M, Kasper EJ, Kasper DL, Robson SC, Kasper LH (2014b) A commensal bacterial product elicits and modulates migratory capacity of CD39(+) CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes 5(4):552–561. doi: 10.4161/gmic.29797 PubMedCrossRefGoogle Scholar
  451. Welsh RM, Selin LK (2002) No one is naive: the significance of heterologous T-cell immunity. Nat Rev Immunol 2(6):417–426. doi: 10.1038/nri820 PubMedGoogle Scholar
  452. Weng NP, Levine BL, June CH, Hodes RJ (1995) Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci U S A 92(24):11091–11094PubMedPubMedCentralCrossRefGoogle Scholar
  453. West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, Prescott AR, Watts C (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305(5687):1153–1157. doi: 10.1126/science.1099153 PubMedCrossRefGoogle Scholar
  454. Wherry EJ, Ahmed R (2004) Memory CD8 T-cell differentiation during viral infection. J Virol 78(11):5535–5545. doi: 10.1128/JVI.78.11.5535-5545.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  455. White GE, Greaves DR (2012) Fractalkine: a survivor’s guide: chemokines as antiapoptotic mediators. Arterioscler Thromb Vasc Biol 32(3):589–594. doi: 10.1161/ATVBAHA.111.237412 PubMedCrossRefGoogle Scholar
  456. White GE, Tan TC, John AE, Whatling C, McPheat WL, Greaves DR (2010) Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth muscle cells via epidermal growth factor receptor signalling. Cardiovasc Res 85(4):825–835. doi: 10.1093/cvr/cvp341 PubMedCrossRefGoogle Scholar
  457. Willemsen LE, Koetsier MA, van Deventer SJ, van Tol EA (2003) Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52(10):1442–1447PubMedPubMedCentralCrossRefGoogle Scholar
  458. Wing MG, Moreau T, Greenwood J, Smith RM, Hale G, Isaacs J, Waldmann H, Lachmann PJ, Compston A (1996) Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/CD18 (LFA-1) on NK cells. J Clin Invest 98(12):2819–2826. doi: 10.1172/JCI119110 PubMedPubMedCentralCrossRefGoogle Scholar
  459. Wingren U, Enerback L (1983) Mucosal mast cells of the rat intestine: a re-evaluation of fixation and staining properties, with special reference to protein blocking and solubility of the granular glycosaminoglycan. Histochem J 15(6):571–582PubMedCrossRefGoogle Scholar
  460. Winkler U, Jensen M, Manzke O, Schulz H, Diehl V, Engert A (1999) Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood 94(7):2217–2224PubMedGoogle Scholar
  461. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Levesque JP (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828. doi: 10.1182/blood-2009-11-253534 PubMedCrossRefGoogle Scholar
  462. Witte K, Witte E, Sabat R, Wolk K (2010) IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 21(4):237–251. doi: 10.1016/j.cytogfr.2010.04.002 PubMedCrossRefGoogle Scholar
  463. Yan N, Chen ZJ (2012) Intrinsic antiviral immunity. Nat Immunol 13(3):214–222. doi: 10.1038/ni.2229 PubMedPubMedCentralCrossRefGoogle Scholar
  464. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814–822PubMedPubMedCentralCrossRefGoogle Scholar
  465. Yang C, Robbins PD (2012) Immunosuppressive exosomes: a new approach for treating arthritis. Int J Rheumatol 2012:573528. doi: 10.1155/2012/573528 PubMedPubMedCentralCrossRefGoogle Scholar
  466. Yewdell JW, Hickman HD (2007) New lane in the information highway: alternative reading frame peptides elicit T cells with potent antiretrovirus activity. J Exp Med 204(11):2501–2504. doi: 10.1084/jem.20071986 PubMedPubMedCentralCrossRefGoogle Scholar
  467. Yong PF, Salzer U, Grimbacher B (2009) The role of costimulation in antibody deficiencies: ICOS and common variable immunodeficiency. Immunol Rev 229(1):101–113. doi: 10.1111/j.1600-065X.2009.00764.x PubMedCrossRefGoogle Scholar
  468. Yoshida T, Mei H, Dorner T, Hiepe F, Radbruch A, Fillatreau S, Hoyer BF (2010) Memory B and memory plasma cells. Immunol Rev 237(1):117–139. doi: 10.1111/j.1600-065X.2010.00938.x PubMedCrossRefGoogle Scholar
  469. Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y, Nakanishi K (2009) Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol 10(7):706–712. doi: 10.1038/ni.1737 PubMedCrossRefGoogle Scholar
  470. Yuseff MI, Pierobon P, Reversat A, Lennon-Dumenil AM (2013) How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol 13(7):475–486. doi: 10.1038/nri3469 PubMedCrossRefGoogle Scholar
  471. Zhao ZS, Granucci F, Yeh L, Schaffer PA, Cantor H (1998) Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 279(5355):1344–1347PubMedCrossRefGoogle Scholar
  472. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109(14):5322–5327. doi: 10.1073/pnas.1200012109 PubMedPubMedCentralCrossRefGoogle Scholar
  473. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489. doi: 10.1146/annurev-immunol-030409-101212 PubMedPubMedCentralCrossRefGoogle Scholar
  474. Zlotnik A, Yoshie O (2012) The chemokine superfamily revisited. Immunity 36(5):705–716. doi: 10.1016/j.immuni.2012.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  475. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7(12):243. doi: 10.1186/gb-2006-7-12-243 PubMedPubMedCentralCrossRefGoogle Scholar
  476. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274. doi: 10.1038/nrc1586 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Charles River Laboratories, Inc.DurhamUSA
  2. 2.Charles River Laboratories, Inc.AshlandUSA

Personalised recommendations