Skip to main content

Efficient Tag Search in Large RFID Systems

  • Chapter
  • First Online:

Part of the book series: Wireless Networks ((WN))

Abstract

This chapter introduces the tag search problem in large RFID systems. A new technique called filtering vector is designed to reduce the transmission overhead during search process, thereby improving the time efficiency. Based on this technique, we present an iterative tag search protocol. Some tags are filtered out in each round and the search process will eventually terminate when the result meets a given accuracy requirement. Moreover, the protocol is extended to work under noisy channel. The simulation results demonstrate that our protocol performs much better than the best existing work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If perfect accuracy is necessary, a post step may be taken by the reader to broadcast the identified IDs. As the wanted tags in the coverage reply after hearing their IDs, those mistakenly included tags can be excluded due to non-response to these IDs.

  2. 2.

    The nature of our protocol guarantees that all tags in YW are not included in W .

References

  1. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions and RFID tags: mind the gap. In: Proceedings of CHES, pp. 283–299 (2008)

    Google Scholar 

  2. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math. 1 (4), 485–509 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Castiglione, P., Ricciato, F., Popovski, P.: Pseudo-random Aloha for inter-frame soft combining in RFID systems. In: Proceedings of IEEE DSP, pp. 1–6 (2013)

    Google Scholar 

  4. Cha, J.R., Kim, J.H.: Dynamic framed slotted ALOHA algorithms using fast tag estimation method for RFID systems. In: Proceedings of IEEE Consumer Communications and Networking Conference (CCNC) (2006)

    Google Scholar 

  5. Choi, J., Lee, C.: A cross-layer optimization for a LP-based multi-reader coordination in RFID systems. In: Proceedings of IEEE GLOBECOM, pp. 1–5 (2010)

    Google Scholar 

  6. Cornaglia, B., Spini, M.: New statistical model for burst error distribution. Eur. Trans. Telecommun. 7, 267–272 (1996)

    Article  Google Scholar 

  7. Dan, L., Wei, P., Wang, J., Tan, J.: TFDMA: a scheme to the RFID reader collision problem based on graph coloration. In: Proceedings of IEEE SOLI, pp. 502–507 (2008)

    Google Scholar 

  8. Eom, J., Lee, T.: Accurate tag estimation for dynamic framed-slotted ALOHA in RFID systems. In: Proceedings of IEEE Communication Letters, pp. 60–62 (2010)

    Google Scholar 

  9. EPC Radio-Frequency Identity Protocols Class-1 Gen-2 UHF RFID Protocol for Communications at 860MHz-960MHz, EPCglobal. Available at http://www.epcglobalinc.org/uhfclg2 (2011)

  10. Federal Standard 1037C. Available at http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm (1996)

  11. Fletcher, R., Marti, U.P., Redemske, R.: Study of UHF RFID signal propagation through complex media. In: IEEE Antennas and Propagation Society International Symposium, vol. 1B, pp. 747–750 (2005)

    Google Scholar 

  12. Fyhn, K., Jacobsen, R.M., Popovski, P., Scaglione, A., Larsen, T.: Multipacket reception of passive UHF RFID tags: a communication theoretic approach. IEEE Trans. Signal Process. 59 (9), 4225–4237 (2011)

    Article  MathSciNet  Google Scholar 

  13. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight Hash functions. In: Proceedings of CRYPTO, pp. 222–239 (2011)

    Google Scholar 

  14. NIST: RFID Communication and Interference. White paper, Grand Prix Application Series (2007)

    Google Scholar 

  15. Kaitovic, J., Rupp, M.: Improved physical layer collision recovery receivers for RFID readers. In: Proceedings of IEEE RFID, pp. 103–109 (2014)

    Google Scholar 

  16. Kaitovic, J., Langwieser, R., Rupp, M.: A smart collision recovery receiver for RFIDs. EURASIP J. Embed. Syst. 2013, 1–19 (2013)

    Article  Google Scholar 

  17. Kang, Y., Kim, M., Lee, H.: A hierarchical structure based reader anti-collision protocol for dense RFID reader networks. In: Proceedings of ICACT, pp. 164–167 (2011)

    Google Scholar 

  18. Kronecker delta. Available at http://en.wikipedia.org/wiki/Kronecker_delta

  19. Lee, S., Joo, S., Lee, C.: An enhanced dynamic framed slotted ALOHA algorithm for RFID tag identification. In: Proceedings of IEEE MobiQuitous (2005)

    Google Scholar 

  20. Nguyen, C.T., Hayashi, K., Kaneko, M., Popovski, P., Sakai, H.: Probabilistic dynamic framed slotted ALOHA for RFID tag identification. Wirel. Pers. Commun. 71, 2947–2963 (2013)

    Article  Google Scholar 

  21. Onat, I., Miri, A.: A tag count estimation algorithm for dynamic framed ALOHA based RFID MAC protocols. In: Proceedings of IEEE ICC, pp. 1–5 (2011)

    Google Scholar 

  22. O’Neill, M.: Low-cost SHA-1 hash function architecture for RFID tags. In: Proceedings of RFIDSec (2008)

    Google Scholar 

  23. Qiao, Y., Li, T., Chen, S.: One memory access bloom filters and their generalization. In: Proceedings of IEEE INFOCOM, pp. 1745–1753 (2011)

    Google Scholar 

  24. Ricciato, F., Castiglione, P.: Pseudo-random ALOHA for enhanced collision-recovery in RFID. IEEE Commun. Lett. 17 (3), 608–611 (2013)

    Article  Google Scholar 

  25. Schoute, F.C.: Dynamic frame length ALOHA. IEEE Trans. Commun. 31, 565–568 (1983)

    Article  Google Scholar 

  26. Shahzad, M., Liu, A.: Every bit counts - fast and scalable RFID estimation. In: Proceedings of ACM Mobicom (2012)

    Google Scholar 

  27. Stefanovic, C., Popovski, P.: ALOHA random access that operates as a rateless code. IEEE Trans. Commun. 61 (11), 4653–4662 (2013)

    Article  Google Scholar 

  28. Zheng, Y., Li, M.: Fast tag searching protocol for large-scale RFID systems. IEEE/ACM Trans. Networking 21 (3), 924–934 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Chen, M., Chen, S. (2016). Efficient Tag Search in Large RFID Systems. In: RFID Technologies for Internet of Things. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-47355-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47355-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47354-3

  • Online ISBN: 978-3-319-47355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics