Advertisement

Efficient Tag Search in Large RFID Systems

  • Min Chen
  • Shigang Chen
Chapter
  • 1.6k Downloads
Part of the Wireless Networks book series (WN)

Abstract

This chapter introduces the tag search problem in large RFID systems. A new technique called filtering vector is designed to reduce the transmission overhead during search process, thereby improving the time efficiency. Based on this technique, we present an iterative tag search protocol. Some tags are filtered out in each round and the search process will eventually terminate when the result meets a given accuracy requirement. Moreover, the protocol is extended to work under noisy channel. The simulation results demonstrate that our protocol performs much better than the best existing work.

Keywords

Hash Function Bloom Filter Empty Slot Filter Vector Polling Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions and RFID tags: mind the gap. In: Proceedings of CHES, pp. 283–299 (2008)Google Scholar
  2. 2.
    Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math. 1 (4), 485–509 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Castiglione, P., Ricciato, F., Popovski, P.: Pseudo-random Aloha for inter-frame soft combining in RFID systems. In: Proceedings of IEEE DSP, pp. 1–6 (2013)Google Scholar
  4. 4.
    Cha, J.R., Kim, J.H.: Dynamic framed slotted ALOHA algorithms using fast tag estimation method for RFID systems. In: Proceedings of IEEE Consumer Communications and Networking Conference (CCNC) (2006)Google Scholar
  5. 5.
    Choi, J., Lee, C.: A cross-layer optimization for a LP-based multi-reader coordination in RFID systems. In: Proceedings of IEEE GLOBECOM, pp. 1–5 (2010)Google Scholar
  6. 6.
    Cornaglia, B., Spini, M.: New statistical model for burst error distribution. Eur. Trans. Telecommun. 7, 267–272 (1996)CrossRefGoogle Scholar
  7. 7.
    Dan, L., Wei, P., Wang, J., Tan, J.: TFDMA: a scheme to the RFID reader collision problem based on graph coloration. In: Proceedings of IEEE SOLI, pp. 502–507 (2008)Google Scholar
  8. 8.
    Eom, J., Lee, T.: Accurate tag estimation for dynamic framed-slotted ALOHA in RFID systems. In: Proceedings of IEEE Communication Letters, pp. 60–62 (2010)Google Scholar
  9. 9.
    EPC Radio-Frequency Identity Protocols Class-1 Gen-2 UHF RFID Protocol for Communications at 860MHz-960MHz, EPCglobal. Available at http://www.epcglobalinc.org/uhfclg2 (2011)
  10. 10.
    Federal Standard 1037C. Available at http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm (1996)
  11. 11.
    Fletcher, R., Marti, U.P., Redemske, R.: Study of UHF RFID signal propagation through complex media. In: IEEE Antennas and Propagation Society International Symposium, vol. 1B, pp. 747–750 (2005)Google Scholar
  12. 12.
    Fyhn, K., Jacobsen, R.M., Popovski, P., Scaglione, A., Larsen, T.: Multipacket reception of passive UHF RFID tags: a communication theoretic approach. IEEE Trans. Signal Process. 59 (9), 4225–4237 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight Hash functions. In: Proceedings of CRYPTO, pp. 222–239 (2011)Google Scholar
  14. 14.
    NIST: RFID Communication and Interference. White paper, Grand Prix Application Series (2007)Google Scholar
  15. 15.
    Kaitovic, J., Rupp, M.: Improved physical layer collision recovery receivers for RFID readers. In: Proceedings of IEEE RFID, pp. 103–109 (2014)Google Scholar
  16. 16.
    Kaitovic, J., Langwieser, R., Rupp, M.: A smart collision recovery receiver for RFIDs. EURASIP J. Embed. Syst. 2013, 1–19 (2013)CrossRefGoogle Scholar
  17. 17.
    Kang, Y., Kim, M., Lee, H.: A hierarchical structure based reader anti-collision protocol for dense RFID reader networks. In: Proceedings of ICACT, pp. 164–167 (2011)Google Scholar
  18. 18.
    Kronecker delta. Available at http://en.wikipedia.org/wiki/Kronecker_delta
  19. 19.
    Lee, S., Joo, S., Lee, C.: An enhanced dynamic framed slotted ALOHA algorithm for RFID tag identification. In: Proceedings of IEEE MobiQuitous (2005)Google Scholar
  20. 20.
    Nguyen, C.T., Hayashi, K., Kaneko, M., Popovski, P., Sakai, H.: Probabilistic dynamic framed slotted ALOHA for RFID tag identification. Wirel. Pers. Commun. 71, 2947–2963 (2013)CrossRefGoogle Scholar
  21. 21.
    Onat, I., Miri, A.: A tag count estimation algorithm for dynamic framed ALOHA based RFID MAC protocols. In: Proceedings of IEEE ICC, pp. 1–5 (2011)Google Scholar
  22. 22.
    O’Neill, M.: Low-cost SHA-1 hash function architecture for RFID tags. In: Proceedings of RFIDSec (2008)Google Scholar
  23. 23.
    Qiao, Y., Li, T., Chen, S.: One memory access bloom filters and their generalization. In: Proceedings of IEEE INFOCOM, pp. 1745–1753 (2011)Google Scholar
  24. 24.
    Ricciato, F., Castiglione, P.: Pseudo-random ALOHA for enhanced collision-recovery in RFID. IEEE Commun. Lett. 17 (3), 608–611 (2013)CrossRefGoogle Scholar
  25. 25.
    Schoute, F.C.: Dynamic frame length ALOHA. IEEE Trans. Commun. 31, 565–568 (1983)CrossRefGoogle Scholar
  26. 26.
    Shahzad, M., Liu, A.: Every bit counts - fast and scalable RFID estimation. In: Proceedings of ACM Mobicom (2012)Google Scholar
  27. 27.
    Stefanovic, C., Popovski, P.: ALOHA random access that operates as a rateless code. IEEE Trans. Commun. 61 (11), 4653–4662 (2013)CrossRefGoogle Scholar
  28. 28.
    Zheng, Y., Li, M.: Fast tag searching protocol for large-scale RFID systems. IEEE/ACM Trans. Networking 21 (3), 924–934 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Min Chen
    • 1
  • Shigang Chen
    • 2
  1. 1.Department of Computer and InformationUniversity of FloridaGainesvilleUSA
  2. 2.Department of Computer and Information ScienceUniversity of FloridaGainesvilleUSA

Personalised recommendations