Advertisement

Introduction

  • Min Chen
  • Shigang Chen
Chapter
Part of the Wireless Networks book series (WN)

Abstract

Internet of Things (IoT) is a new networking paradigm for cyber-physical systems that allow physical objects to collect and exchange data. Generally, every physical object in the IoT needs to be uniquely identified by some auto-ID technologies. Radio Frequency Identification (RFID) tags have been widely used as object identifiers for IoT. The widespread use of RFID tags in IoT brings about new issues on efficiency, security, and privacy, which in turn opens up new research opportunities. This book presents several RFID protocols that are designed to improve the efficiency, security, and privacy of the IoT.

Keywords

Internet of things RFID Tag search Anonymous authenticationp Tag identification 

References

  1. 1.
    AEI Technology. Available at http://www.aeitag.com/aeirfidtec.html (2008)
  2. 2.
    Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions and RFID tags: mind the gap. In: Proceedings of CHES, pp. 283–299 (2008)Google Scholar
  3. 3.
    Bu, K., Xiao, B., Xiao, Q., Chen, S.: Efficient pinpointing of misplaced tags in large RFID systems. In: Proceedings of IEEE SECON, pp. 287–295 (2011)Google Scholar
  4. 4.
    Chen, M., Chen, S.: An efficient anonymous authentication protocol for RFID systems using dynamic tokens. In: Proceedings of IEEE ICDCS (2015)CrossRefGoogle Scholar
  5. 5.
    Chen, M., Chen, S.: ETAP: enable lightweight anonymous RFID authentication with O(1) overhead. In: Proceedings of IEEE ICNP (2015)Google Scholar
  6. 6.
    Chen, M., Chen, S.: Identifying state-free networked tags. In: Proceedings of IEEE ICNP (2015)CrossRefGoogle Scholar
  7. 7.
    Chen, S., Deng, Y., Attie, P., Sun, W.: Optimal deadlock detection in distributed systems based on locally constructed wait-for graphs. In: Proceedings of IEEE INFOCOM, pp. 613–619 (1996)Google Scholar
  8. 8.
    Chen, S., Zhang, M., Xiao, B.: Efficient information collection protocols for sensor-augmented RFID networks. In: Proceedings of IEEE INFOCOM, pp. 3101–3109 (2011)Google Scholar
  9. 9.
    Chen, M., Luo, W., Mo, Z., Chen, S., Fang, Y.: An efficient tag search protocol in large-scale RFID systems. In: Proceedings of IEEE INFOCOM, pp. 1325–1333 (2013)Google Scholar
  10. 10.
    Chen, M., Chen, S., Xiao, Q.: Pandaka: a lightweight cipher for RFID systems. In: Proceedings of IEEE INFOCOM, pp. 172–180 (2014)Google Scholar
  11. 11.
    Chen, M., Luo, W., Mo, Z., Chen, S., Fang, Y.: An efficient tag search protocol in large-scale RFID systems with noisy channel. IEEE/ACM Trans. Networking PP (99), 1–1 (2015)Google Scholar
  12. 12.
    EPC Radio-Frequency Identity Protocols Class-1 Gen-2 UHF RFID Protocol for Communications at 860MHz-960MHz, EPCglobal. Available at http://www.epcglobalinc.org/uhfclg2 (2011)
  13. 13.
    Gorlatova, M., Kinget, P., Kymissis, I., Rubenstein, D., Wang, X., Zussman, G.: Challenge: ultra-low-power energy-harvesting active networked tags (EnHANTs). In: Proceedings of ACM Mobicom, pp. 253–260 (2009)Google Scholar
  14. 14.
    Gorlatova, M., Margolies, R., Sarik, J., Stanje, G., Zhu, J., Vigraham, B., Szczodrak, M., Carloni, L., Kinget, P., Kymissis, I., Zussman, G.: Prototyping energy harvesting active networked tags (EnHANTs). In: Proceedings of IEEE INFOCOM mini-conference (2013)CrossRefGoogle Scholar
  15. 15.
    Kinget, P., Kymissis, I., Rubenstein, D., Wang, X., Zussman, G.: Energy harvesting active networked tags (EnHANTs) for ubiquitous object networking. IEEE Trans. Wirel. Commun. 17 (6), 18–25 (2010)CrossRefGoogle Scholar
  16. 16.
    Lee, C.H., Chung, C.W.: Efficient storage scheme and query processing for supply chain management using RFID. In: Proceedings of ACM SIGMOD (2008)CrossRefGoogle Scholar
  17. 17.
    Li, Y., Ding, X.: Protecting RFID communications in supply chains. In: Proceedings of IEEE ASIACCS (2007)CrossRefGoogle Scholar
  18. 18.
    Li, T., Chen, S., Ling, Y.: Efficient protocols for identifying the missing tags in a large RFID system. IEEE/ACM Trans. Networking 21 (6), 1974–1987 (2013)CrossRefGoogle Scholar
  19. 19.
    Liu, J., Xiao, B., Bu, K., Chen, L.: Efficient distributed query processing in large RFID-enabled supply chains. In: Proceedings of IEEE INFOCOM, pp. 163–171 (2013)Google Scholar
  20. 20.
    Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R.: Ambient backscatter: wireless communication out of thin air. In: Proceedings of ACM SIGCOMM, pp. 39–50 (2013)Google Scholar
  21. 21.
    Liu, J., Chen, M., Xiao, B., Zhu, F., Chen, S., Chen, L.: Efficient RFID grouping protocols. IEEE/ACM Trans. Networking PP (99), 1–1 (2016)Google Scholar
  22. 22.
    Luo, W., Chen, S., Li, T.: Probabilistic missing-tag detection and energy-time tradeoff in large-scale RFID systems. In: Proceedings of ACM Mobihoc (2012)CrossRefGoogle Scholar
  23. 23.
    Luo, W., Qiao, Y., Chen, S.: An efficient protocol for RFID multigroup threshold-based classification. In: Proceedings of IEEE INFOCOM, pp. 890–898 (2013)Google Scholar
  24. 24.
    Luo, W., Qiao, Y., Chen, S., Chen, M.: An efficient protocol for RFID multigroup threshold-based classification based on sampling and logical bitmap. IEEE/ACM Trans. Networking 24 (1), 397–407 (2016)CrossRefGoogle Scholar
  25. 25.
    Myung, J., Lee, W.: Adaptive splitting protocols for RFID tag collision arbitration. In: Proceedings of ACM Mobihoc (2006)CrossRefGoogle Scholar
  26. 26.
    Network Everything. Available at http://openinterconnect.org
  27. 27.
    Ni, L., Liu, Y., Lau, Y.C.: Landmarc: indoor location sensing using active RFID. In: Proceedings of IEEE PerCom (2003)Google Scholar
  28. 28.
    Qian, C., Liu, Y., Ngan, H., Ni, L.M.: ASAP: scalable identification and counting for contactless RFID systems. In: Proceedings of IEEE ICDCS (2010)Google Scholar
  29. 29.
    Qiao, Y., Chen, S., Li, T.: Energy-efficient polling protocols in RFID systems. In: Proceedings of ACM Mobihoc (2011)CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Shahzad, M., Liu, A.X.: Probabilistic optimal tree hopping for RFID identification. In: Proceedings of ACM SIGMETRICS, pp. 293–304 (2013)Google Scholar
  32. 32.
    Sheng, B., Tan, C., Li, Q., Mao, W.: Finding popular categories for RFID tags. In: Proceedings of ACM Mobihoc (2008)CrossRefGoogle Scholar
  33. 33.
    Sheng, B., Li, Q., Mao, W.: Efficient continuous scanning in RFID systems. In: Proceedings of IEEE INFOCOM (2010)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Sun Pass. Available at https://www.sunpass.com/index
  36. 36.
    Xia, Y., Chen, S., Cho, C., Korgaonkar, V.: Algorithms and performance of load-balancing with multiple hash functions in massive content distribution. Comput. Netw. 53 (1), 110–125 (2009)CrossRefzbMATHGoogle Scholar
  37. 37.
    Xiao, Q., Chen, M., Chen, S., Zhou, Y.: Temporally or spatially dispersed joint RFID estimation using snapshots of variable lengths. In: Proceedings of ACM Mobihoc (2015)CrossRefGoogle Scholar
  38. 38.
    Xiao, Q., Chen, S., Chen, M.: Joint property estimation for multiple RFID tag sets using snapshots of variable lengths. In: Proceedings of ACM Mobihoc (2016)CrossRefGoogle Scholar
  39. 39.
    Zhang, Z., Chen, S., Ling, Y., Chow, R.: Capacity-aware multicast algorithms on heterogeneous overlay networks. IEEE Trans. Parallel Distrib. Syst. 17 (2), 135–147 (2006)CrossRefGoogle Scholar
  40. 40.
    Zheng, Y., Li, M.: Fast tag searching protocol for large-scale RFID systems. IEEE/ACM Trans. Networking 21 (3), 924–934 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Min Chen
    • 1
  • Shigang Chen
    • 2
  1. 1.Department of Computer and InformationUniversity of FloridaGainesvilleUSA
  2. 2.Department of Computer and Information ScienceUniversity of FloridaGainesvilleUSA

Personalised recommendations