Skip to main content

Polymer Optical Fiber Sensors

  • Chapter
  • First Online:
Optical Fiber Sensors for loT and Smart Devices

Abstract

In previous chapters, different optical sensing mechanisms have been discussed. The characteristics of the different types of OFSs have been presented and compared. Although different types and characteristics have been shown, all those sensing techniques were fabricated using silica optical fibers. In this chapter, an alternative line of optical fiber sensors is introduced. Those sensors are fabricated using polymer (in other words plastic). The chapter discusses this type of polymer-based OFSs, elaborating on the different sensing techniques and wide range of applications. More importantly, this type of OFSs is compared to the more commonly used Silica based OFSs. The chapter provides an introduction to polymer optical fibers and their use in sensing. The characteristics of POFs are then discussed, highlighting their advantages and limitations. The different techniques used for sensing in POFs are then presented, with demonstration of their most potential applications and the motivation behind using this alternative type of OFSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peters, Kara. “Polymer optical fiber sensors—a review.” Smart materials and structures 20.1 (2010): 013002.

    Article  Google Scholar 

  2. Ohtsuka, Yasuji, Eisuke Nihei, and Yasuhiro Koike. “Graded-index optical fibers of methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth.” Applied physics letters 57.2 (1990): 120-122.

    Article  Google Scholar 

  3. Zubia, Joseba, and Jon Arrue. “Plastic optical fibers: An introduction to their technological processes and applications.” Optical Fiber Technology 7.2 (2001): 101-140.

    Article  Google Scholar 

  4. Leitão, Cátia Sofia Jorge, et al. “Plastic optical fiber sensor for noninvasive arterial pulse waveform monitoring.” IEEE Sensors Journal 15.1 (2015): 14-18.

    Google Scholar 

  5. Bilro, Lúcia, et al. “Gait monitoring with a wearable plastic optical sensor.” Sensors, 2008 IEEE. IEEE, 2008.

    Google Scholar 

  6. Costa Antunes, Paulo, et al. “Dynamic structural health monitoring of a civil engineering structure with a POF accelerometer.” Sensor Review 34.1 (2014): 36-41.

    Google Scholar 

  7. Antunes, Paulo, et al. “Liquid level gauge based in plastic optical fiber.” Measurement 66 (2015): 238-243.

    Article  Google Scholar 

  8. Bilro, Lúcia, et al. “Optical sensors based on plastic fibers.” Sensors 12.9 (2012): 12184-12207.

    Article  Google Scholar 

  9. Ziemann, Olaf, et al. “POF handbook.” Springer (2008).

    Google Scholar 

  10. Peters, Kara. “4 Polymer Optical Fiber Sensors.” Optical Fiber Sensors: Advanced Techniques and Applications 36 (2015): 79.

    Google Scholar 

  11. Ziemann, Olaf, et al. POF-polymer optical fibers for data communication. Springer Science & Business Media, 2013.

    Google Scholar 

  12. Jasim, Ali Abdulhadi, et al. “Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber.” Sensors and Actuators A: Physical 219 (2014): 94-99.

    Article  Google Scholar 

  13. Bunge, Christian-A., et al. “Dopant-free fabrication process for graded-index polymer optical fiber solely based on temperature treatment.” 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, 2015.

    Google Scholar 

  14. Van Eijkelenborg, Martijn A., et al. “Microstructured polymer optical fibre. “Optics express 9.7 (2001): 319-327.

    Google Scholar 

  15. Yang, D. X., et al. “Structural and mechanical properties of polymeric optical fiber.” Materials Science and Engineering: A 364.1 (2004): 256-259.

    Article  Google Scholar 

  16. Silva-López, Manuel, et al. “Strain and temperature sensitivity of a single-mode polymer optical fiber.” Optics Letters 30.23 (2005): 3129-3131.

    Article  Google Scholar 

  17. Zhang, Wei, David J. Webb, and G-D. Peng. “Investigation into time response of polymer fiber Bragg grating based humidity sensors.” Journal of lightwave technology 30.8 (2012): 1090-1096.

    Google Scholar 

  18. Zhang, Wei, and David J. Webb. “Humidity responsivity of poly (methyl methacrylate)-based optical fiber Bragg grating sensors.” Optics letters 39.10 (2014): 3026-3029.

    Article  Google Scholar 

  19. Batumalay, Malathy, et al. “A study of relative humidity fiber-optic sensors.” IEEE Sensors Journal 15.3 (2015): 1945-1950.

    Article  Google Scholar 

  20. Antunes, Paulo Fernando Costa, Humberto Varum, and Paulo S. Andre. “Intensity-encoded polymer optical fiber accelerometer.” IEEE Sensors Journal 13.5 (2013): 1716-1720.

    Google Scholar 

  21. André, P. S., et al. “Monitoring of the concrete curing process using plastic optical fibers.” Measurement 45.3 (2012): 556-560.

    Article  Google Scholar 

  22. Takeda, Nobuo. “Characterization of microscopic damage in composite laminates and real-time monitoring by embedded optical fiber sensors.” International Journal of Fatigue 24.2 (2002): 281-289.

    Article  MathSciNet  Google Scholar 

  23. Chen, Tao, et al. “Crack detection and monitoring in viscoelastic solids using polymer optical fiber sensors.” Review of Scientific Instruments 87.3 (2016): 035005.

    Google Scholar 

  24. Kuang, K. S. C., et al. “Plastic optical fibre sensors for structural health monitoring: a review of recent progress.” Journal of Sensors 2009 (2009).

    Google Scholar 

  25. Moraleda, Alberto Tapetado, et al. “A temperature sensor based on a polymer optical fiber macro-bend.” Sensors 13.10 (2013): 13076-13089.

    Article  Google Scholar 

  26. Teng, Chuan-xin, Ning Jing, and Jie Zheng. “The influence of temperature to a refractive index sensor based on a macro-bending tapered plastic optical fiber.” Optical Fiber Technology 31 (2016): 32-35.

    Article  Google Scholar 

  27. Teng, Chuanxin, et al. “Investigation of a Macro-Bending Tapered Plastic Optical Fiber for Refractive Index Sensing.” IEEE Sensors Journal 16.20 (2016): 7521-7525.

    Article  Google Scholar 

  28. Stupar, Dragan Z., et al. “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor.” IEEE Sensors Journal 12.12 (2012): 3424-3431.

    Article  Google Scholar 

  29. Anwar Zawawi, Mohd, Sinead O'Keffe, and Elfed Lewis. “Intensity-modulated fiber optic sensor for health monitoring applications: a comparative review.” Sensor Review 33.1 (2013): 57-67.

    Google Scholar 

  30. Silva-López, Manuel, et al. “Strain and temperature sensitivity of a single-mode polymer optical fiber.” Optics Letters 30.23 (2005): 3129-3131.

    Article  Google Scholar 

  31. Kiesel, Sharon, et al. “Large deformation in-fiber polymer optical fiber sensor.” IEEE Photonics Technology Letters 20.6 (2008): 416-418.

    Article  Google Scholar 

  32. Gallego, Daniel, and Horacio Lamela. “High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications.” Optics letters 34.12 (2009): 1807-1809.

    Article  Google Scholar 

  33. Kiesel, Sharon, et al. “Polymer optical fiber sensors for the civil infrastructure.” Smart Structures and Materials. International Society for Optics and Photonics, 2006.

    Google Scholar 

  34. Jiang, Guoliang, et al. “Oscillator interrogated time-of-flight optical fiber interferometer for global strain measurements.” Sensors and Actuators A: Physical 135.2 (2007): 443-450.

    Article  Google Scholar 

  35. Durana, Gaizka, et al. “Use of a novel fiber optical strain sensor for monitoring the vertical deflection of an aircraft flap.” IEEE sensors journal 9.10 (2009): 1219-1225.

    Article  Google Scholar 

  36. Liehr, Sascha, et al. “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring.” IEEE Sensors Journal 9.11 (2009): 1330-1338.

    Article  Google Scholar 

  37. Leung, Christopher KY, et al. “Review: optical fiber sensors for civil engineering applications.” Materials and Structures 48.4 (2015): 871-906.

    Article  Google Scholar 

  38. Witt, Jens, et al. “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement.” IEEE Sensors Journal 12.1 (2012): 246-254.

    Article  Google Scholar 

  39. Peng, G. D., Z. Xiong, and P. L. Chu. “Photosensitivity and gratings in dye-doped polymer optical fibers.” Optical Fiber Technology 5.2 (1999): 242-251.

    Article  Google Scholar 

  40. Liu, H. Y., H. B. Liu, and G. D. Peng. “Tensile strain characterization of polymer optical fibre Bragg gratings.” Optics Communications 251.1 (2005): 37-43.

    Article  Google Scholar 

  41. Liu, H. Y., G. D. Peng, and P. L. Chu. “Thermal tuning of polymer optical fiber Bragg gratings.” IEEE Photonics Technology Letters 13.8 (2001): 824-826.

    Article  Google Scholar 

  42. Luo, Yanhua, et al. “Analysis of multimode POF gratings in stress and strain sensing applications.” Optical Fiber Technology 17.3 (2011): 201-209.

    Article  Google Scholar 

  43. Liu, H. B., et al. “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power.” IEEE Photonics Technology Letters 16.1 (2004): 159-161.

    Article  Google Scholar 

  44. Emiliyanov, Grigoriy, et al. “Localized biosensing with Topas microstructured polymer optical fiber.” Optics Letters 32.5 (2007): 460-462.

    Article  Google Scholar 

  45. Yang, Chunxue, et al. “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement.” IEEE Photonics Journal 6.2 (2014): 1-8.

    Google Scholar 

  46. Peng, Lirong, et al. “Gaseous ammonia fluorescence probe based on cellulose acetate modified microstructured optical fiber.” Optics Communications 284.19 (2011): 4810-4814.

    Article  Google Scholar 

  47. Wolfbeis, Otto S., and Hermann E. Posch. “Fibre-optic fluorescing sensor for ammonia.” Analytica Chimica Acta 185 (1986): 321-327.

    Article  Google Scholar 

  48. Johnson, Ian P., Kyriacos Kalli, and David J. Webb. “827 nm Bragg grating sensor in multimode microstructured polymer optical fibre.” Electronics letters 46.17 (2010): 1.

    Article  Google Scholar 

  49. Markos, Christos, et al. “High-T g TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees.” Optics express 21.4 (2013): 4758-4765.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Domingues, M.d.F.F., Radwan, A. (2017). Polymer Optical Fiber Sensors. In: Optical Fiber Sensors for loT and Smart Devices. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-47349-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47349-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47348-2

  • Online ISBN: 978-3-319-47349-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics