Skip to main content

A Survey of Applications of the Discrete Fourier Transform in Music Theory

  • Chapter
  • First Online:
The Musical-Mathematical Mind

Part of the book series: Computational Music Science ((CMS))

  • 1305 Accesses

Abstract

Discrete Fourier Transform may well be the most promising track in recent music theory. Though it dates back to David Lewin’s first paper (Lewin, J. Music Theory (3), 1959) [33], it was but recently revived by Quinn in his PhD dissertation in 2005 (Quinn, Perspectives of New Music 44(2)–45(1), 2006–2007) [35], with a previous mention in (Vuza, Persp. of New Music, nos. 29(2) pp. 22–49; 30(1), pp. 184–207; 30(2), pp. 102–125; 31(1), pp. 270–305, 1991–1992) [40], and numerous further developments by (Andreatta, Agon, (guest eds), JMM 2009, vol. 3(2). Taylor and Francis, Milton Park) [5], (Amiot, Music Theory Online, 2, 2009) [8], (Amiot, Rahn, (eds.), Perspectives of New Music, special issue 49 (2) on Tiling Rhythmic Canons) [9], (Amiot, Proceedings of SMCM, Montreal. Springer, Berlin, 2013) [10], (Amiot, Sethares, JMM 5, vol. 3. Taylor and Francis, Milton Park (2011) [16], (Callender, J. Music Theory 51(2), 2007) [17], (Hoffman, JMT 52(2), 2008) [29] (Tymoczko, JMT 52(2), 251–272, 2008) [38], (Tymoczko, Proceedings of SMCM, Yale, pp. 258–272. Springer, Berlin, 2009) [39], (Yust, J. Music Theory 59(1) (2015) [42]. I chose to broach this subject because I have had a finger in most, or all, of the pies involved (even using Discrete Fourier Transform without consciously knowing it, in the study of rhythmic tilings).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I use the modern terms.

  2. 2.

    In the case of mosaic tilings by translation.

  3. 3.

    At the time, probably the only theorist to mention Lewin’s use of DFT.

  4. 4.

    Except for \({\mathcal {F}}_{A}(0)\), which is equal to the cardinality of A.

  5. 5.

    The general definition of \(f*g\) is the map \(t\mapsto \sum \limits _{k\in \mathbb {Z}_n} f(k) g(t-k)\).

  6. 6.

    For instance \(j=(0,1,0,\dots 0)\) is the spectral unit that turns any pc-set A into its translate \(A+1\). Its Fourier coefficients are all \(n^{th}\) roots of unity.

  7. 7.

    There are 6,192 such spectral units for \(n=12\).

  8. 8.

    With the added technical condition \({\mathcal {F}}_{A}(0){\mathcal {F}}_{B}(0)=\#A \#B = n\).

  9. 9.

    In layman’s terms, this means that if motif A tiles, then so does \(\alpha \times A \mod n\), for any \(\alpha \) coprime with n. This is actually a deep algebraic property, but nonetheless it was rediscovered independently by several music composers.

  10. 10.

    At the time the authors made use of polynomials, not Fourier coefficients, but this is an isomorphic point of view. We translated their definitions accordingly.

  11. 11.

    Such as defined in [18,19,20] and others.

  12. 12.

    There is a good correlation between this saliency and the saturation of the collection in interval d (Aline Honing, personal communication).

  13. 13.

    For 3-sets, \(|{\mathcal {F}}_{A}(3) | = 3 - \dfrac{\pi ^2}{8} V L^2 + o(V L^4)\), best near the maximum, whereas the linear regression yields \( |{\mathcal {F}}_{A}(3)| \approx 3.39 - 1.57 \times V L\). The formula is different from the one in [39] because of a different convention in the definition of DFT.

  14. 14.

    The \(3^rd\) and \(5^{th}\) were chosen for stringent reasons. It was also the choice independently made by [42]).

  15. 15.

    Please remember that this picture is a torus, i.e. opposite sides should be construed as glued together.

References

  1. Agon, C., Amiot, E., Andreatta, M.: Tiling the line with polynomials, In: Proceedings ICMC (2005)

    Google Scholar 

  2. Agon, C., Amiot, E., Andreatta, M., Ghisi, D., Mandereau, J.: Z-relation and homometry in musical distributions. In: JMM 2011, vol. 5. Taylor and Francis, Milton Park

    Google Scholar 

  3. Amiot E.: Music through Fourier Space. Springer (2016)

    Google Scholar 

  4. Andreatta, M., On group-theoretical methods applied to music: some compositional and implementational aspects. In: Lluis-Puebla, E., Mazzola G., Noll T. et al. (eds.) Perspectives of Mathematical and Computer-Aided Music Theory, EpOs, Universität Osnabrück, pp. 122–162 (2004)

    Google Scholar 

  5. Andreatta, M., Agon, C.: (guest eds), Special Issue Tiling Problems in Music. JMM 2009, vol. 3(2). Taylor and Francis, Milton Park

    Google Scholar 

  6. Andreatta, M.: De la conjecture de Minkowski aux canons rythmiques mosaïques, L’Ouvert, n\({^\circ }\)114, March 2007, pp. 51–61

    Google Scholar 

  7. Amiot, E.: Why rhythmic canons are interesting. In: Lluis-Puebla, E., Mazzola G., Noll, T. et al. (eds.) Perspectives of Mathematical and Computer-Aided Music Theory, EpOs, 190–209, Universität Osnabrück (2004)

    Google Scholar 

  8. Amiot, E.: Discrete Fourier Transform and Bach’s Good Temperament. Music Theory Online, 2 (2009)

    Google Scholar 

  9. Amiot, E., Rahn, J. (eds.), Perspectives of New Music, special issue 49 (2) on Tiling Rhythmic Canons

    Google Scholar 

  10. Amiot, E.: The Torii of phases. In: Proceedings of SMCM, Montreal. Springer, Berlin (2013)

    Google Scholar 

  11. Amiot, E.: Rhythmic canons and Galois theory. Grazer Math. Ber. 347, 1–25 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Amiot, E.: À propos des canons rythmiques. Gazette des Mathématiciens, SMF Ed. 106, 43–67 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Amiot, E.: New perspectives on rhythmic canons and the spectral conjecture. In: Special Issue “Tiling Problems in Music”, JMM 3, vol. 2. Taylor and Francis, Milton Park (2009)

    Google Scholar 

  14. Amiot, E.: David Lewin and maximally even sets. In: JMM 1, vol. 3, pp. 157–172, Taylor and Francis, Milton Park (2007)

    Google Scholar 

  15. Amiot, E.: Structures, algorithms, and algebraic tools for rhythmic canons. Perspectives of New Music 49(2), 93–143 (2011)

    Google Scholar 

  16. Amiot, E., Sethares, W.: An algebra for periodic rhythms and scales. In: JMM 5, vol. 3. Taylor and Francis, Milton Park (2011)

    Google Scholar 

  17. Callender, C.: Continuous harmonic spaces. J. Music Theory 51(2) (2007)

    Google Scholar 

  18. Clough, J., Douthett, J.: Maximally even sets. J. Music Theory 35, 93–173 (1991)

    Article  Google Scholar 

  19. Clough, J., Myerson, G.: Variety and multiplicity in diatonic systems. J. Music Theory 29, 249–270 (1985)

    Article  Google Scholar 

  20. Clough, J., Myerson, G.: Musical scales and the generalized circle of fifths. AMM 93(9), 695–701 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cohn, R.: Properties and generability of transpositionally invariant sets. J. Music Theory 35(1), 1–32 (1991)

    Article  Google Scholar 

  22. Coven, E., Meyerowitz, A.: Tiling the integers with one finite set. J. Alg. 212, 161–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fidanza, G.: Canoni ritmici, tesa di Laurea, U. Pisa (2008)

    Google Scholar 

  24. Fripertinger, H.: Remarks on Rhythmical Canons. Grazer Math. Ber. 347, 55–68 (2005)

    MATH  MathSciNet  Google Scholar 

  25. Fripertinger, H.: Tiling problems in music theory. In: Lluis-Puebla, E., Mazzola, G., Noll, T. (eds.) Perspectives of Mathematical and Computer-Aided Music Theory, pp. 149–164. Universität Osnabrück, EpOs (2004)

    Google Scholar 

  26. Fuglede, H.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Func. Anal. 16, 101–121 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gilbert, E.: Polynômes cyclotomiques, canons mosaïques et rythmes \(k\)-asymétriques, mémoire de Master ATIAM, Ircam, May 2007

    Google Scholar 

  28. Hall, R., Klinsberg, P.: Asymmetric rhythms and tiling canons. Am. Math. Mon. 113(10), 887–896 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hoffman, J.: On pitch-class set cartography relations between voice-leading spaces and fourier spaces. JMT 52(2) (2008)

    Google Scholar 

  30. Jedrzejewski, F.: The structure of Z-related sets. In: Proceedings of MCM 204th International Conference in Montreal, pp. 128–137. Springer, Berlin (2013)

    Google Scholar 

  31. Johnson, T.: Tiling the line. In: Proceedings of J.I.M., Royan (2001)

    Google Scholar 

  32. Kolountzakis, M. Matolcsi, M.: Algorithms for translational tiling, in special issue tiling problems in music. J. Math. Music 3(2) (2009). Taylor and Francis

    Google Scholar 

  33. Lewin, D.: Intervalic relations between two collections of notes. J. Music Theory (3) (1959)

    Google Scholar 

  34. Mandereau, J., Ghisi, D., Amiot, E., Andreatta, M., Agon, C.: Discrete phase retrieval in musical distributions. In: JMM 2011, (5). Taylor and Francis, Milton Park

    Google Scholar 

  35. Quinn, I.: General equal-tempered harmony. Perspectives of New Music 44(2)–45(1) (2006–2007)

    Google Scholar 

  36. Rosenblatt, J., Seymour P.D.: The structure of homometric sets. SIAM J. Algebraic Discret. Methods 3(3) (1982)

    Google Scholar 

  37. Tao, T.: Fuglede’s Conjecture is False in 5 and Higher Dimensions. http://arxiv.org/abs/math.CO/0306134

  38. Tymoczko, D.: Set-class similarity. Voice leading, and the Fourier Transform. JMT 52(2), 251–272 (2008)

    Google Scholar 

  39. Tymoczko, D.: Three conceptions of musical distance. In: Proceedings of SMCM, Yale, pp. 258–272. Springer, Berlin (2009)

    Google Scholar 

  40. Vuza, D.T.: Supplementary sets and regular complementary unending canons, in four parts in: Canons. Persp. of New Music, nos. 29(2) pp. 22–49; 30(1), pp. 184–207; 30(2), pp. 102–125; 31(1), pp. 270–305 (1991–1992)

    Google Scholar 

  41. Wild, J.: Tessellating the chromatic. Perspectives of New Music (2002)

    Google Scholar 

  42. Yust, J.: Schubert’s Harmonic language and fourier phase space. J. Music Theory 59(1) (2015)

    Google Scholar 

Download references

Acknowledgements

My heartiest thanks to the organizers of this beautiful event for the opportunity of exposing this rich subject to a learned audience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Amiot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Amiot, E. (2017). A Survey of Applications of the Discrete Fourier Transform in Music Theory. In: Pareyon, G., Pina-Romero, S., Agustín-Aquino, O., Lluis-Puebla, E. (eds) The Musical-Mathematical Mind. Computational Music Science. Springer, Cham. https://doi.org/10.1007/978-3-319-47337-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47337-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47336-9

  • Online ISBN: 978-3-319-47337-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics