Skip to main content

Oxygen Gas Sensing Technologies Application: A Comprehensive Review

  • Chapter
  • First Online:
Sensors for Everyday Life

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 23))

Abstract

Different oxygen gas sensing technologies, i.e., potentiometric, amperometric, paramagnetic and tunable diode laser spectroscopy (TDLS) are reviewed in details. Special attention is given to the theoretical aspects and operation basics of the technologies, application limits and analyzers or system requirements. A comprehensive technologies review is supported with the latest developments trends especially on the potentiometric zirconia and tunable diode laser analyzers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C.G. Walker, The oxygen cycle, in The natural environment and the biogeochemical cycles, ed. by O. Hutzinger (Springer, Berlin, Heidelberg, New York, 1980), pp. 87–104

    Google Scholar 

  2. N. Lane, Oxygen: the molecule that made the world (Oxford University Press, New York, 2002)

    Google Scholar 

  3. N. Docquier, S. Candel, Process control and sensors: a review. Prog. Energy Combust. Sci. 28, 107–150 (2002)

    Article  Google Scholar 

  4. P. Shuk, Process Zirconia oxygen analyzer—state of art. Tech. Mess. 77, 19–23 (2010)

    Article  Google Scholar 

  5. C. Wu, T. Yasukawa, H. Shiku, T. Matsue, Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sens. Actuators B110, 342–349 (2005)

    Article  Google Scholar 

  6. C. Manning, R.F. Keeling, J.P. Severinghaus, Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer. Global Biogeochem. Cycles 13, 1107–1115 (1999)

    Article  Google Scholar 

  7. A. Mills, Optical oxygen sensors utilizing the luminescence of platinum metals complexes. Platinum Met. Rev. 41, 115–127 (1997)

    Google Scholar 

  8. S. Chu, Y.L. Lo, T.W. Sung, Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors. Photonic Sens. 1, 234–250 (2011)

    Article  Google Scholar 

  9. W.C. Maskell, B.C.H. Steele, Solid state potentiometric oxygen gas sensors. J. Appl. Electrochem. 16, 475–489 (1986)

    Article  Google Scholar 

  10. R. Ramamoorthy, P.K. Dutta, S.A. Akbar, Oxygen sensors: materials, methods, designs and applications, J. Mater. Sci. 38: 4271–4282

    Google Scholar 

  11. W.C. Maskell, Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors. J. Phys. E: Sci. Instrum. 20, 1156–1168 (1987)

    Article  Google Scholar 

  12. W. Göpel, G. Reinhardt, M. Rösch, Trends in the development of solid state amperometric and potentiometric high temperature sensors. Solid State Ionics 136–137, 519–531 (2000)

    Article  Google Scholar 

  13. J.W. Fergus, Doping and defect association in oxides for use in oxygen sensors. J. Mater. Sci. 38, 4259–4270 (2003)

    Article  Google Scholar 

  14. N. Barsan, M. Schweizer-Berberich, W. Göpel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J. Anal. Chem. 365, 287–304 (1999)

    Article  Google Scholar 

  15. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to? Sens. Actuators B121, 18–35 (2007)

    Article  Google Scholar 

  16. A. Oprea, N. Bârsan, U. Weimar, Work function changes in gas sensitive materials: Fundamentals and applications. Sens. Actuators B142, 470–493 (2009)

    Article  Google Scholar 

  17. H. Wang, L. Chen, J. Wang, Q. Sun, Y. Zhao, A micro oxygen sensor based on a nano sol-gel TiO2 thin film. Sensors 14, 16423–16433 (2014)

    Article  Google Scholar 

  18. H. Peters, H.H. Möbius, Procedure for the gas analysis at elevated temperatures using galvanic solid electrolyte elements (Germ), DD-Patent 21673 (1961)

    Google Scholar 

  19. J. Weissbart, R. Ruka, Oxygen gauge. Rev. Sci. Instrum. 32, 593–595 (1961)

    Article  Google Scholar 

  20. P. Shuk, E. Bailey, U. Guth, Zirconia oxygen sensor for the process application: state of art. Sens. Transducer 90, 174–184 (2008)

    Google Scholar 

  21. H.H. Möbius, Basics of oxygen gas potentiometric analysis (Germ). Z. Phys. Chem. 230, 396–416 (1965)

    Google Scholar 

  22. http://www.fujielectric.com/products/instruments/library/catalog/box/doc/ECNO341b.pdf

  23. D.M. Haaland, Internal-reference solid-electrolyte oxygen sensor. Anal. Chem. 49, 1813–1817 (1977)

    Article  Google Scholar 

  24. H. Kaneko, T. Okamura, H. Taimatsu, Y. Matsuki, H. Nishida, Performance of a miniature zirconia oxygen sensor with a Pd-PdO internal reference. Sens. Actuators B108, 331–334 (2005)

    Article  Google Scholar 

  25. J.V. Spirig, R. Ramamoorthy, S.A. Akbar, J.L. Routbort, D. Singh, P.K. Dutta, High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference. Sens. Actuators B124, 192–201 (2007)

    Article  Google Scholar 

  26. K. Dunst, G. Jasinski, P. Jasinski, Potentiometric oxygen sensor with solid state reference electrode. Metrol. Meas. Syst. 21, 205–216 (2014)

    Article  Google Scholar 

  27. E.D. Hinkley, P.L. Kelley, Detection of air pollutants with Tunable Diode Lasers. Science 171, 635–639 (1971)

    Article  Google Scholar 

  28. P. Werle, A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta A54, 197–236 (1998)

    Article  Google Scholar 

  29. P.A. Martin, Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. Chem. Soc. Rev. 31, 201–210 (2002)

    Article  Google Scholar 

  30. R.K. Hanson, Applications of quantitative sensor laser to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1–40 (2011)

    Article  Google Scholar 

  31. S.J. Rye, TDL: One Size No Longer Fits All, 59th Analysis Division Symposium, ISA, vol. 503 (Curran Associates Proc, Red Hook, 2014), pp. 1–16

    Google Scholar 

  32. J.D. Tate, Development of in situ analysis for the chemical industry. DOE report (DE-FC36-02ID14428) (2006)

    Google Scholar 

  33. J.D. Tate, Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers. DOE report (DE-FG36-06GO16093) (2010)

    Google Scholar 

  34. Y. Krishna, S. O’Byrne, J.J. Kurtz, Baseline correction for stray light in log-ratio diode laser absorption measurements. Appl. Opt. 53, 4128–4135 (2014)

    Article  Google Scholar 

  35. S. Langridge, On line measurement of oxygen: review and new developments, in 55th Analysis Division Symposium, ISA, vol. 481. Curran Associates Proc, Red Hook (2010), pp. 113–127

    Google Scholar 

  36. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45, 1052–1060 (2006)

    Article  Google Scholar 

  37. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546–5560 (2009)

    Article  Google Scholar 

  38. G.B. Rieker, Wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments, Ph.D. thesis, Stanford University (2009)

    Google Scholar 

  39. D. Farnesi, A. Barucci, G.C. Righini, S. Berneschi, S. Soria, G. Nunzi Conti, Optical frequency conversion in silica - whispering-gallery-mode microspherical resonators. Phys. Rev. Lett. 112, 093901 (2014)

    Article  Google Scholar 

  40. http://www.yokogawa.com/an/faq/tdls/spec_1.htm

  41. http://www.appliedmc.com/content/images/TDLS200_BU_WEB.pdf

  42. http://us.mt.com/dam/MTPRO/Brochures/Leporello_GPro500_en.pdf

  43. http://specanalytics.com/index.php?route=information/information&information_id=13

  44. R.F. Curl, F.K. Tittel, Tunable infrared laser spectroscopy. Ann. Rep. Prog. Chem C98, 219–272 (2002)

    Article  Google Scholar 

  45. M. Lackner, Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review. Rev. Chem. Eng. 23, 65–147 (2011)

    Google Scholar 

  46. F.K. Tittel, R. Lewicki, R. Lascola, S. McWhorter, Emerging infrared laser absorption spectroscopic techniques for gas analysis, in Trace Analysis of Specialty and Electronic Gases, ed. by W.M. Geiger, M.W. Raynor (John Wiley & Sons Inc, New York, 2013), pp. 71–109

    Chapter  Google Scholar 

  47. K. Kohse-Hӧinghaus, R.S. Barlow, M. Alden, J. Wolfrum, Combustion at the Focus: Laser Diagnostics and Control. Proc. Combust. Inst. 30, 89–123 (2005)

    Article  Google Scholar 

  48. R.P. Kovacich, N.A. Martin, M.G. Clift, C. Stocks, I. Gaskin, J. Hobby, Highly accurate measurement of oxygen using a paramagnetic gas sensor. Meas. Sci. Technol. 17, 1579–1585 (2006)

    Article  Google Scholar 

  49. http://www.systechillinois.com/en/paramagnetic-cells_54.html

  50. http://www2.emersonprocess.com/siteadmincenter/PM%20Rosemount%20Analytical%20Documents/PGA_Manual_755A_199707.pdf

  51. http://www.yokogawa.com/an/download/general/GS11P03A05_01E.pdf

  52. http://www.keison.co.uk/products/servomex/Oxy1900.pdf

  53. http://www2.emersonprocess.com/siteadmincenter/PM%20Rosemount%20Analytical%20Documents/PGA_PDS_X-STREAM_XEGP.pdf

  54. C. Manning, R.F. Keeling, J.P. Severinghaus, Precise atmospheric oxygen measurements with paramagnetic oxygen analyzer. Global Biogeochem. Cycles 13, 1107–1115 (1999)

    Article  Google Scholar 

  55. S. Vonderschmidt, J. Muller (2010) A novel micro paramagnetic oxygen sensor. In: Micro Electro Mechanical Systems (MEMS). 23rd IEEE International Conference, pp. 903–906

    Google Scholar 

  56. M. Willett, Oxygen sensing for industrial safety—evolution and new approaches. Sensors 14, 6084–6103 (2014)

    Article  Google Scholar 

  57. K.S. Goto, Solid state electrochemistry and its applications to sensors and electronic devices (Elsevier Science Publishers, New York, 2013)

    Google Scholar 

  58. http://www.citytech.com/index.html

  59. http://www.hsmsearch.com/page_527804.asp

Download references

Acknowledgment

The author would like to thank Rosemount Liquid and Combustion Analysis for the research program support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shuk, P. (2017). Oxygen Gas Sensing Technologies Application: A Comprehensive Review. In: Mukhopadhyay, S., Postolache, O., Jayasundera, K., Swain, A. (eds) Sensors for Everyday Life. Smart Sensors, Measurement and Instrumentation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-47322-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47322-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47321-5

  • Online ISBN: 978-3-319-47322-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics