Skip to main content

Flexible Printed Sensors for Ubiquitous Human Monitoring

  • Chapter
  • First Online:
Sensors for Everyday Life

Abstract

The flexible printed sensors based on nanomaterials available currently have numerous challenges attached to it. The formation of nanocomposite for the electrodes is an issue mainly regarding the solubility of the conducting material. Mostly, the electrodes are not highly conductive in the flexible sensors fabricated due to the non-uniform distribution of conductive material in the polymer. The process of introducing conductive material as electrodes needs manual processing and thus becomes expensive. The sensitivity of the flexible sensor saturates with time due to the constant bending leading to deformation marks on the substrate material. This also leads to uneven surface and eventually inappropriate reading of the sensor. It is difficult to decrease the inter-electrode distance due to the spreading of the conductive ink in the printed sensors. There are many drawbacks to the current method of fabrication of flexible printed sensor. This research follows a novel approach to developing a sensor via the fabrication and characterization of a flexible, strain sensitive patch which would be used for bio-medical applications. Based on the laser-ablation technology, some prototype sensors have been designed and fabricated. It shows the experimental results obtained from the developed sensor on the detection of limb movements. The sensors would also be explored for other novel applications in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wang, Nanomaterial-based electrochemical biosensors. Analyst 130, 421ā€“426 (2005)

    ArticleĀ  Google ScholarĀ 

  2. F.W. Scheller, U. Wollenberger, A. Warsinke, F. Lisdat, Research and development in biosensors. Curr. Opin. Biotechnol. 12, 35ā€“40 (2001)

    ArticleĀ  Google ScholarĀ 

  3. M. Zhang, M.R. Haider, M.A. Huque, M.A. Adeeb, S. Rahman, S.K. Islam, A low power sensor signal processing circuit for implantable biosensor applications. Smart Mater. Struct. 16, 525 (2007)

    ArticleĀ  Google ScholarĀ 

  4. A. Agah, K. Vleugels, P.B. Griffin, M. Ronaghi, J.D. Plummer, B.A. Wooley, A high-resolution low-power incremental ADC with extended range for biosensor arrays. Solid-State Circuits, IEEE J. 45, 1099ā€“1110 (2010)

    ArticleĀ  Google ScholarĀ 

  5. E. Udd, J.P. Theriault, A. Markus, Y. Bar-Cohen, Microbending fiber optic sensors for smart structures, in OE/FIBERSā€™89, 478ā€“482 (1990)

    Google ScholarĀ 

  6. V. Giurgiutiu, Structural health monitoring: with piezoelectric wafer active sensors (Academic Press, London, 2007)

    Google ScholarĀ 

  7. G. Park, H.H. Cudney, D.J. Inman, An integrated health monitoring technique using structural impedance sensors. J. Intell. Mater. Syst. Struct. 11, 448ā€“455 (2000)

    ArticleĀ  Google ScholarĀ 

  8. C.D. Kidd, R. Orr, G.D. Abowd, C.G. Atkeson, I.A. Essa, B. MacIntyre et al., The aware home: a living laboratory for ubiquitous computing research. Cooperative buildings. Integrating information, organizations, and architecture, ed. (Springer, 1999), pp. 191ā€“198

    Google ScholarĀ 

  9. I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15, 737 (2006)

    ArticleĀ  Google ScholarĀ 

  10. J.A. Rice, B.F. Spencer Jr., Flexible smart sensor framework for autonomous full-scale structural health monitoring (Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign. 1940ā€“9826, 2009)

    Google ScholarĀ 

  11. J.A. Rice, K. Mechitov, S.-H. Sim, T. Nagayama, S. Jang, R. Kim et al., Flexible smart sensor framework for autonomous structural health monitoring. Smart structures and Systems 6, 423ā€“438 (2010)

    ArticleĀ  Google ScholarĀ 

  12. S. Magdassi, The chemistry of inkjet inks (World scientific Singapore, 2010)

    Google ScholarĀ 

  13. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubesā€“the route toward applications. Science 297, 787ā€“792 (2002)

    ArticleĀ  Google ScholarĀ 

  14. J. Lin, C. He, Y. Zhao, S. Zhang, One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sens. Actuators B: Chem. 137, 768ā€“773 (2009)

    ArticleĀ  Google ScholarĀ 

  15. O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, G. Yue, Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc. Chem. Res. 35, 1045ā€“1053 (2002)

    ArticleĀ  Google ScholarĀ 

  16. J. Lƶtters, W. Olthuis, P. Veltink, P. Bergveld, The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145 (1997)

    ArticleĀ  Google ScholarĀ 

  17. S. Logothetidis, Flexible organic electronic devices: materials, process and applications. Mater. Sci. Eng., B 152, 96ā€“104 (2008)

    ArticleĀ  Google ScholarĀ 

  18. P. Calvert, Inkjet printing for materials and devices. Chem. Mater. 13, 3299ā€“3305 (2001)

    ArticleĀ  Google ScholarĀ 

  19. X. Li, J. Tian, G. Garnier, W. Shen, Fabrication of paper-based microfluidic sensors by printing. Colloids Surf., B 76, 564ā€“570 (2010)

    ArticleĀ  Google ScholarĀ 

  20. S. Mukhopadhyay, A. Nag, A. Zia, X. Li, J. Kosel, Novel sensing approach for LPG leakage detection: Part I: operating mechanism and preliminary results (2015)

    Google ScholarĀ 

  21. S. Mukhopadhyay, A. Nag, A. Zia, X. Li, J. Kosel, Novel sensing approach for LPG leakage detection: Part II: effects of particle size, composition and coating layer thickness (2015)

    Google ScholarĀ 

  22. A.I. Zia, M.S.A. Rahman, S.C. Mukhopadhyay, P.-L. Yu, I.H. Al-Bahadly, C.P. Gooneratne et al., Technique for rapid detection of phthalates in water and beverages. J. Food Eng. 116, 515ā€“523 (2013)

    ArticleĀ  Google ScholarĀ 

  23. A. Rahman, M.S. Bin, Novel planar interdigital sensors for the detection of bacterial endotoxins: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philososphy (Electronics Engineering at Massey University, Palmerston North, New Zealand, 2012)

    Google ScholarĀ 

  24. A. Nag, A.I. Zia, S. Mukhopadhyay, J. Kosel, Performance enhancement of electronic sensor through mask-less lithography. 2015 9th International Conference on Sensing Technology (ICST) (2015), pp. 374ā€“379

    Google ScholarĀ 

  25. A.I. Zia, N. Afsarimanesh, L. Xie, A. Nag, I. Al-Bahadly, P. Yu, et al., Improved detection limits for phthalates by selective solid-phase micro-extraction. 2015 9th International Conference on Sensing Technology (ICST) (2015), pp. 733ā€“738

    Google ScholarĀ 

  26. C. Ashruf, Thin flexible pressure sensors. Sensor Review 22, 322ā€“327 (2002)

    ArticleĀ  Google ScholarĀ 

  27. C. Pang, C. Lee, K.Y. Suh, Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130, 1429ā€“1441 (2013)

    ArticleĀ  Google ScholarĀ 

  28. M. Segev-Bar, H. Haick, Flexible sensors based on nanoparticles. ACS Nano 7, 8366ā€“8378 (2013)

    ArticleĀ  Google ScholarĀ 

  29. R.S. Dahiya, S. Gennaro, Bendable ultra-thin chips on flexible foils. Sens. J., IEEE 13, 4030ā€“4037 (2013)

    ArticleĀ  Google ScholarĀ 

  30. N. Zhao, M. Chiesa, H. Sirringhaus, Y. Li, Y. Wu, B. Ong, Self-aligned inkjet printing of highly conducting gold electrodes with submicron resolution. J. Appl. Phys. 101, 064513 (2007)

    ArticleĀ  Google ScholarĀ 

  31. D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150, G412ā€“G417 (2003)

    ArticleĀ  Google ScholarĀ 

  32. P. Chen, H. Chen, J. Qiu, C. Zhou, Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 3, 594ā€“603 (2010)

    ArticleĀ  Google ScholarĀ 

  33. K. KordĆ”s, T. Mustonen, G. TĆ³th, H. Jantunen, M. Lajunen, C. Soldano et al., Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2, 1021ā€“1025 (2006)

    ArticleĀ  Google ScholarĀ 

  34. L. Yang, R. Zhang, D. Staiculescu, C. Wong, M.M. Tentzeris, A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. Antennas and Wirel. Propag. Lett., IEEE 8, 653ā€“656 (2009)

    ArticleĀ  Google ScholarĀ 

  35. B.C. Tee, C. Wang, R. Allen, Z. Bao, An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825ā€“832 (2012)

    ArticleĀ  Google ScholarĀ 

  36. S. Khan, L. Lorenzelli, R.S. Dahiya, Screen printed flexible pressure sensors skin. Advanced Semiconductor Manufacturing Conference (ASMC), 2014 25th Annual SEMI (2014), pp. 219ā€“224

    Google ScholarĀ 

  37. Y. Zhou, L. Hu, G. GrĆ¼ner, A method of printing carbon nanotube thin films. Appl. Phys. Lett. 88, 123109 (2006)

    ArticleĀ  Google ScholarĀ 

  38. J.J. Boland, Flexible electronics: within touch of artificial skin. Nat. Mater. 9, 790ā€“792 (2010)

    ArticleĀ  Google ScholarĀ 

  39. H. Lipson, M. Kurman, Fabricated: the new world of 3D printing (John Wiley & Sons, 2013)

    Google ScholarĀ 

  40. E.F. Nuwaysir, W. Huang, T.J. Albert, J. Singh, K. Nuwaysir, A. Pitas et al., Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 12, 1749ā€“1755 (2002)

    ArticleĀ  Google ScholarĀ 

  41. W. Ramberg, W.R. Osgood, Description of stressā€“strain curves by three parameters (1943)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas Chandra Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nag, A., Mukhopadhyay, S.C., Kosel, J. (2017). Flexible Printed Sensors for Ubiquitous Human Monitoring. In: Postolache, O., Mukhopadhyay, S., Jayasundera, K., Swain, A. (eds) Sensors for Everyday Life. Smart Sensors, Measurement and Instrumentation, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-47319-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47319-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47318-5

  • Online ISBN: 978-3-319-47319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics