Skip to main content

Rethinking the Study of Volition for Clinical Use

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 957))

Abstract

Volition, the acquired voluntary control of our actions (at will), requires from birth to development and beyond a proper balance across multiple layers of the nervous systems. These levels range from the autonomic, to the automatic, to the voluntary control level, providing as well taxonomy with phylogenetic order of appearance in evolution. In the past few decades of movement research at the behavioral and systems levels, there has been a paucity of studies focusing on the possible contributions of involuntary movements to volitional control. Moreover, the work focusing on voluntary behavior has given us a valuable body of knowledge about constrained and highly over practiced activities while work involving unrestrained, naturalistic behaviors remains scarce. Perhaps in making theoretical assumptions about our data acquisition and analyses without properly empirically verifying, these assumptions have left us with a somewhat skewed notion of how we think the brain may be realizing the neural control of bodily motions; a notion that does not exactly correspond to the outcome of the extant empirical work assessing unrestrained movements as the nervous system acquires them and modifies skillful behaviors on demand. This chapter takes advantage of new technological advances and new analytics to invite rethinking some of the problems that we study in movement science by enforcing somewhat oversimplified assumptions on the data that we model, acquire, and analyze. I show that by relaxing our a priori assumptions of normality, linearity and stationarity in data from biophysical rhythms of the nervous systems, we would gain better insights into the motor phenomena. Further, we would shy away from a “self-fulfilling prophesy” paradigm with a tendency to a priori handcraft the outcome of our inquiry. The new lens to study natural movements and their control includes as well involuntary motions that take place largely beneath deliberate awareness. I present examples of solutions amenable to the habilitation and rehabilitation of volition in patient populations and discuss a new vision for movement science in light of making a seamless transition from volitional to intentional control of actions and thoughts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • American Psychiatric Association, DSM-5 Task Force (2013) Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5:2318–2330

    CAS  PubMed  Google Scholar 

  • Bernstein N (1967) The co-ordination and regulation of movements. Oxford Press, Oxford

    Google Scholar 

  • Biess A, Liebermann DG, Flash T (2007) A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J Neurosci 27:13045–13064. doi:10.1523/JNEUROSCI.4334-06.2007 27/48/13045 [pii]

  • Biess A, Flash T, Liebermann DG (2011) Riemannian geometric approach to human arm dynamics, movement optimization, and invariance. Phys Rev E: Stat, Nonlin, Soft Matter Phys 83:031927

    Article  Google Scholar 

  • Brincker M, Torres EB (2013) Noise from the periphery in autism. Front Integr Neurosci 7:34. doi:10.3389/fnint.2013.00034

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchland MM, Afshar A, Shenoy KV (2006a) A central source of movement variability. Neuron 52:1085–1096. doi:S0896-6273(06)00871-3

    Google Scholar 

  • Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV (2006b) Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci 26:3697–3712. doi:26/14/3697

    Google Scholar 

  • Churchland MM, Yu BM, Cunningham JP et al (2010) Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci 13:369–378. doi:nn.2501

    Google Scholar 

  • Cole J (1995) Pride and a daily marathon. MIT Press, Cambridge

    Google Scholar 

  • Cosgrove L, Krimsky S (2012) A comparison of DSM-IV and DSM-5 panel members’ financial associations with industry: a pernicious problem persists. PLoS Med 9:e1001190. doi:10.1371/journal.pmed.1001190

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosgrove L, Krimsky S, Vijayaraghavan M, Schneider L (2006) Financial ties between DSM-IV panel members and the pharmaceutical industry. Psychother Psychosom 75:154–160. doi:10.1159/000091772

    Article  PubMed  Google Scholar 

  • Cosgrove L, Krimsky S, Wheeler EE, Kaitz J, Greenspan SB, DiPentima NL (2014) Tripartite conflicts of interest and high stakes patent extensions in the DSM-5. Psychother Psychosom 83:106–113. doi:10.1159/000357499

    Article  PubMed  Google Scholar 

  • Deen B, Pelphrey K (2012) Perspective: brain scans need a rethink. Nature 491:S20

    Article  CAS  PubMed  Google Scholar 

  • Faisal AA, Selen LP, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9:292–303. doi:nrn2258

    Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    CAS  PubMed  Google Scholar 

  • Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2:45–53. doi:0.1006/nimg.1995.1007

    Google Scholar 

  • Hamilton AF, Wolpert DM (2002) Controlling the statistics of action: obstacle avoidance. J Neurophysiol 87:2434–2440

    PubMed  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784. doi:10.1038/29528

    Google Scholar 

  • Kording KP, Wolpert DM (2004a) Bayesian integration in sensorimotor learning. Nature 427:244–247. doi:10.1038/nature02169

    Article  PubMed  Google Scholar 

  • Kording KP, Wolpert DM (2004b) The loss function of sensorimotor learning. Proc Natl Acad Sci USA 101:9839–9842. doi:10.1073/pnas.0308394101

    Article  PubMed  PubMed Central  Google Scholar 

  • Kording KP, Wolpert DM (2006) Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10:319–326. doi:S1364-6613(06)00127-6

    Google Scholar 

  • Kuczmarski RJ, Ogden CL, Grummer-Strawn LM et al (2000) CDC growth charts: United States. Adv Data 1–27

    Google Scholar 

  • Kuczmarski RJ, Ogden CL, Guo SS et al (2002) 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11:1–190

    Google Scholar 

  • Latash ML, Scholz JP, Schoner G (2002) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31

    Article  PubMed  Google Scholar 

  • Limpert E, Stahel WA (2011) Problems with using the normal distribution and ways to improve quality and efficiency of data analysis. PLoS ONE 6:e21403. doi:10.1371/journal.pone.002140310-PONE-RA-16396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352

    Article  Google Scholar 

  • Nguyen J, Papathomas TV, Ravaliya JH, Torres EB (2014) Methods to explore the influence of top-down visual processes on motor behavior. J Vis Exp. doi:10.3791/51422

    Google Scholar 

  • Nguyen J, Majmudar UV, Ravaliya JH, Papathomas TV, Torres EB (2015) Automatically characterizing sensory-motor patterns underlying reach-to-grasp movements on a physical depth inversion illusion. Front Hum Neurosci 9:694. doi:10.3389/fnhum.2015.00694

    PubMed  Google Scholar 

  • Nishikawa KC, Murray ST, Flanders M (1999) Do arm postures vary with the speed of reaching? J Neurophysiol 81:2582–2586

    CAS  PubMed  Google Scholar 

  • Piper MC, Pinnell LE, Darrah J, Maguire T, Byrne PJ (1992) Construction and validation of the Alberta Infant Motor Scale (AIMS). Can J Public Health 83 Suppl 2:S46–50

    Google Scholar 

  • Pontriagin LS (1990) Optimal control and differential games: collection of papers. American Mathematical Society, Providence

    Google Scholar 

  • Robledo J, Donnellan AM, Strandt-Conroy K (2012) An exploration of sensory and movement differences from the perspective of individuals with autism. Front Integr Neurosci 6:107. doi:10.3389/fnint.2012.00107

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers DM (1992) Motor disorder in psychiatry: towards a neurological psychiatry. Wiley, Chichester

    Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Scholz JP, Kang N, Patterson D, Latash ML (2003) Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without Down syndrome. Exp Brain Res 153:45–58. doi:10.1007/s00221-003-1580-8

    Article  PubMed  Google Scholar 

  • Smith LB, Thelen E (2003) Development as a dynamic system. Trends Cogn Sci 7:343–348. doi:S1364661303001566

    Google Scholar 

  • Thelen E, Smith LB (1994) A dynamic systems approach to the development of cognition and action. MIT Press, Cambridge

    Google Scholar 

  • Todorov E (2005) Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Comput 17:1084–1108. doi:10.1162/0899766053491887

    Article  PubMed  PubMed Central  Google Scholar 

  • Todorov E (2009) Efficient computation of optimal actions. Proc Natl Acad Sci USA 106:11478–11483. doi:0710743106

    Google Scholar 

  • Torres E (2001) Theoretical framework for the study of sensory-motor integration. In: Cognitive science, PhD, University of California, San Diego, La Jolla, p 109

    Google Scholar 

  • Torres EB (2010) New symmetry of intended curved reaches. Behav Brain Funct 6:21. doi:1744-9081-6-21

    Google Scholar 

  • Torres EB (2011) Two classes of movements in motor control. Exp Brain Res 215:269–283. doi:10.1007/s00221-011-2892-8

    Article  PubMed  Google Scholar 

  • Torres EB (2012) Atypical signatures of motor variability found in an individual with ASD. Neurocase Neural Basis Cogn 1:1–16. doi:10.1080/13554794.2011.654224

    Google Scholar 

  • Torres EB (2013a) The rates of change of the stochastic trajectories of acceleration variability are a good predictor of normal aging and of the stage of Parkinson’s disease. Front Integr Neurosci 7:50

    PubMed  PubMed Central  Google Scholar 

  • Torres EB (2013b) Signatures of movement variability anticipate hand speed according to levels of intent. Behav Brain Functions 9:10. doi:10.1186/1744-9081-9-10

    Article  Google Scholar 

  • Torres E, Andersen R (2006) Space-time separation during obstacle-avoidance learning in monkeys. J Neurophysiol 96:2613–2632. doi:00188.2006

    Google Scholar 

  • Torres EB, Denisova K (2016) Motor noise is rich signal in autism research and pharmacological treatments. Sci Rep 6:37422. doi:10.1038/srep37422

  • Torres EB, Lande B (2015) Objective and personalized longitudinal assessment of a pregnant patient with post severe brain trauma. Front Hum Neurosci 9:128. doi:10.3389/fnhum.2015.00128

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres EB, Zipser D (2002) Reaching to grasp with a multi-jointed arm. I. Computational model. J Neurophysiol 88:2355–2367. doi:10.1152/jn.00030.2002

    Article  PubMed  Google Scholar 

  • Torres EB, Zipser D (2004) Simultaneous control of hand displacements and rotations in orientation-matching experiments. J Appl Physiol (1985) 96:1978–1987. doi:10.1152/japplphysiol.00872.2003

    Google Scholar 

  • Torres EB, Raymer A, Gonzalez Rothi LJ, Heilman KM, Poizner H (2010) Sensory-spatial transformations in the left posterior parietal cortex may contribute to reach timing. J Neurophysiol 104:2375–2388. doi:jn.00089.2010

    Google Scholar 

  • Torres EB, Heilman KM, Poizner H (2011) Impaired endogenously evoked automated reaching in Parkinson’s disease. J Neurosci 31:17848–17863. doi:31/49/17848

    Google Scholar 

  • Torres EB, Brincker M, Isenhower RW et al (2013a) Autism: the micro-movement perspective. Front Integr Neurosci 7:32. doi:10.3389/fnint.2013.00032

    PubMed  PubMed Central  Google Scholar 

  • Torres EB, Isenhower RW, Yanovich P, Rehrig G, Stigler K, Nurnberger J, Jose JV (2013b) Strategies to develop putative biomarkers to characterize the female phenotype with autism spectrum disorders. J Neurophysiol 110:1646–1662. doi:10.1152/jn.00059.2013

    Article  PubMed  Google Scholar 

  • Torres EB, Quian Quiroga R, Cui H, Buneo CA (2013c) Neural correlates of learning and trajectory planning in the posterior parietal cortex. Front Integr Neurosci 7:39. doi:10.3389/fnint.2013.00039

    PubMed  PubMed Central  Google Scholar 

  • Torres EB, Yanovich P, Metaxas DN (2013d) Give spontaneity and self-discovery a chance in ASD: spontaneous peripheral limb variability as a proxy to evoke centrally driven intentional acts. Front Integr Neurosci 7:46. doi:10.3389/fnint.2013.00046

    PubMed  PubMed Central  Google Scholar 

  • Torres EB, Cole J, Poizner H (2014) Motor output variability, deafferentation, and putative deficits in kinesthetic reafference in Parkinson’s disease. Front Hum Neurosci 8:823. doi:10.3389/fnhum.2014.00823

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres EB, Isenhower RW, Nguyen J et al (2016) Toward precision psychiatry: statistical platform for the personalized characterization of natural behaviors. Front Neurol 7:8. doi:10.3389/fneur.2016.00008

    Article  PubMed  PubMed Central  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern 61:89–101

    Article  CAS  PubMed  Google Scholar 

  • van Beers RJ (2009) Motor learning is optimally tuned to the properties of motor noise. Neuron 63:406–417. doi:S0896-6273(09)00516-9

    Google Scholar 

  • van Beers RJ, Baraduc P, Wolpert DM (2002) Role of uncertainty in sensorimotor control. Philos Trans R Soc Lond B Biol Sci 357:1137–1145. doi:10.1098/rstb.2002.1101

    Article  PubMed  PubMed Central  Google Scholar 

  • van Beers RJ, Haggard P, Wolpert DM (2004) The role of execution noise in movement variability. J Neurophysiol 91:1050–1063. doi:10.1152/jn.00652.200300652.2003

    Article  PubMed  Google Scholar 

  • van Beers RJ, Brenner E, Smeets JB (2013) Random walk of motor planning in task-irrelevant dimensions. J Neurophysiol 109:969–977. doi:10.1152/jn.00706.2012

    Article  PubMed  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) The principle of reafference: interactions between the central nervous system and the peripheral organs. In: Dodwell PC (ed) Perceptual Processing: stimulus equivalence and pattern recognition. Appleton-Century-Crofts, New York, pp 41–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth B. Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Torres, E.B. (2016). Rethinking the Study of Volition for Clinical Use. In: Laczko, J., Latash, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-319-47313-0_13

Download citation

Publish with us

Policies and ethics