Skip to main content

Anticipation in Object Manipulation: Behavioral and Neural Correlates

  • Chapter
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 957))

Abstract

One way to foster the understanding of the impressively skilled fine motor control of human object manipulation is to investigate the rules of the underlying fundamental mechanisms. Examining the action of grasping and lifting objects of various characteristics reveals that one vital step to handle objects in a skilled and fluent way is to predict their properties and plan motor actions accordingly. A large number of behavioral studies have extracted the factors on which we rely when we interact with objects in an anticipatory mode of action. At the same time, considerable effort was taken to elucidate the neuroanatomical areas and networks involved and crucial for anticipatory behavior by conducting functional imaging and stimulation studies and examining the deficits of patients with localized brain damage. This chapter gives an overview of these studies and tries to reconcile their findings, in order to provide an insight into the basic principles of anticipatory motor control and their underlying neural substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ameli M, Dafotakis M, Fink GR, Nowak DA (2008) Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and object weight. Neuropsychologia 46:2383–2388

    Article  PubMed  Google Scholar 

  • Bensmail D, Sarfeld AS, Ameli M, Fink GR, Nowak DA (2012) Arbitrary visuomotor mapping in the grip-lift task: dissociation of performance deficits in right and left middle cerebral artery stroke. Neuroscience 210:128–136. doi:10.1016/j.neuroscience.2012.03.015

    Article  CAS  PubMed  Google Scholar 

  • Berner J, Schonfeldt-Lecuona C, Nowak DA (2007) Sensorimotor memory for fingertip forces during object lifting: the role of the primary motor cortex. Neuropsychologia 45:1931–1938

    Article  PubMed  Google Scholar 

  • Blennerhassett JM, Carey LM, Matyas TA (2006) Grip force regulation during pinch grip lifts under somatosensory guidance: comparison between people with stroke and healthy controls. Arch Phys Med Rehabil 87:418–429. doi:10.1016/j.apmr.2005.11.018

    Article  PubMed  Google Scholar 

  • Blennerhassett JM, Matyas TA, Carey LM (2007) Impaired discrimination of surface friction contributes to pinch grip deficit after stroke. Neurorehabil Neural Repair 21:263–272. doi:10.1177/1545968306295560

    Article  PubMed  Google Scholar 

  • Boecker H, Lee A, Mühlau M et al (2005) Force level independent representations of predictive grip force—load force coupling: A PET activation study. NeuroImage 25:243–252. doi:10.1016/j.neuroimage.2004.10.027

    Article  CAS  PubMed  Google Scholar 

  • Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, Timmann D (2008) Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol 119:2528–2537

    Article  CAS  PubMed  Google Scholar 

  • Brandauer B, Timmann D, Häußler A, Hermsdörfer J (2010) Influences of load characteristics on impaired control of grip forces in patients with cerebellar damage. J Neurophysiol 103:698–708

    Article  CAS  PubMed  Google Scholar 

  • Buckingham G, Bienkiewicz M, Rohrbach N, Hermsdörfer J (2015) The impact of unilateral brain damage on weight perception, sensorimotor anticipation, and fingertip force adaptation. Vis Res 115:231–237. doi:10.1016/j.visres.2015.02.005

    Article  PubMed  Google Scholar 

  • Buckingham G, Cant JS, Goodale MA (2009) Living in a material world: how visual cues to material properties affect the way that we lift objects and perceive their weight. J Neurophysiol 102:3111–3118. doi:10.1152/jn.00515.2009

    Article  PubMed  Google Scholar 

  • Bursztyn LL, Flanagan JR (2008) Sensorimotor memory of weight asymmetry in object manipulation. Exp Brain Res 184:127–133. doi:10.1007/s00221-007-1173-z

    Article  PubMed  Google Scholar 

  • Chang EC, Flanagan JR, Goodale MA (2008) The intermanual transfer of anticipatory force control in precision grip lifting is not influenced by the perception of weight. Exp Brain Res 185:319–329. doi:10.1007/s00221-007-1156-0

    Article  PubMed  Google Scholar 

  • Chouinard PA, Large ME, Chang EC, Goodale MA (2009) Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: an fMRI investigation of the size-weight illusion. Neuroimage 44:200–212

    Article  PubMed  Google Scholar 

  • Chouinard PA, Leonard G, Paus T (2005) Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object lifting. J Neurosci 25:2277–2284

    Article  CAS  PubMed  Google Scholar 

  • Cole KJ (2008) Lifting a familiar object: visual size analysis, not memory for object weight, scales lift force. Exp Brain Res 188:551–557. doi:10.1007/s00221-008-1392-y

    Article  PubMed  Google Scholar 

  • Craje C, Santello M, Gordon AM (2013) Effects of visual cues of object density on perception and anticipatory control of dexterous manipulation. PLoS ONE 8:e76855. doi:10.1371/journal.pone.0076855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dafotakis M, Sparing R, Eickhoff SB, Fink GR, Nowak DA (2008) On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force. Brain Res in press. doi:10.1016/j.brainres.2008.06.027

    Google Scholar 

  • Davare M, Andres M, Clerget E, Thonnard JL, Olivier E (2007) Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. J Neurosci 27:3974–3980. doi:10.1523/jneurosci.0426-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Davare M, Kraskov A, Rothwell J, Lemon R (2011) Interactions between areas of the cortical grasping network. Curr Opin Neurobiol 21:565–570. doi:10.1016/j.conb.2011.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson AM, Buxbaum LJ, Duff SV (2010) The impact of left hemisphere stroke on force control with familiar and novel objects: neuroanatomic substrates and relationship to apraxia. Brain Res 1317:124–136. doi:10.1016/j.brainres.2009.11.034

    Article  CAS  PubMed  Google Scholar 

  • Ehrsson HH, Fagergren A, Ehrsson GO, Forssberg H (2007) Holding an object: neural activity associated with fingertip force adjustments to external perturbations. J Neurophysiol 97:1342–1352

    Article  PubMed  Google Scholar 

  • Ehrsson HH, Fagergren A, Johansson RS, Forssberg H (2003) Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J Neurophysiol 90:2978–2986

    Article  PubMed  Google Scholar 

  • Eidenmüller S, Randerath J, Goldenberg G, Li Y, Hermsdörfer J (2014) The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects. Neuropsychologia 61:222–234. doi:10.1016/j.neuropsychologia.2014.06.026

    Article  PubMed  Google Scholar 

  • Flanagan JR, Beltzner MA (2000) Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat Neurosci 3:737–741. doi:10.1038/76701

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, Bittner JP, Johansson RS (2008) Experience can change distinct size-weight priors engaged in lifting objects and judging their weights. Curr Biol 18:1742–1747. doi:10.1016/j.cub.2008.09.042

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, King S, Wolpert DM, Johansson RS (2001) Sensorimotor prediction and memory in object manipulation. Can J Exp Psychol 55:87–95

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, Merritt K, Johansson RS (2009) Predictive mechanisms and object representations used in object manipulation. In: Nowak DA, Hermsdörfer J (eds) Sensorimotor control of grasping: physiology and pathophysiology. Cambridge University Press, Cambrige, pp 161–203

    Chapter  Google Scholar 

  • Fu Q, Choi JY, Gordon AM, Jesunathadas M, Santello M (2014) Learned manipulation at unconstrained contacts does not transfer across hands. PLoS ONE 9:e108222. doi:10.1371/journal.pone.0108222

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Q, Hasan Z, Santello M (2011) Transfer of learned manipulation following changes in degrees of freedom. J Neurosci 31:13576–13584. doi:10.1523/JNEUROSCI.1143-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Santello M (2012) Context-dependent learning interferes with visuomotor transformations for manipulation planning. J Neurosci 32:15086–15092. doi:10.1523/JNEUROSCI.2468-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Santello M (2015) Retention and interference of learned dexterous manipulation: interaction between multiple sensorimotor processes. J Neurophysiol 113:144–155. doi:10.1152/jn.00348.2014

    Article  PubMed  Google Scholar 

  • Fu Q, Zhang W, Santello M (2010) Anticipatory planning and control of grasp positions and forces for dexterous two-digit manipulation. J Neurosci 30:9117–9126. doi:10.1523/JNEUROSCI.4159-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallivan JP, Cant JS, Goodale MA, Flanagan JR (2014) Representation of object weight in human ventral visual cortex. Curr Biol 24:1866–1873. doi:10.1016/j.cub.2014.06.046

    Article  CAS  PubMed  Google Scholar 

  • Gordon AM, Charles J, Duff SV (1999) Fingertip forces during object manipulation in children with hemiplegic cerebral palsy. II: bilateral coordination. Dev Med Child Neurol 41:176–185

    Article  CAS  PubMed  Google Scholar 

  • Gordon AM, Duff SV (1999) Fingertip forces during object manipulation in children with hemiplegic cerebral palsy. I: anticipatory scaling. Dev Med Child Neurol 41:166–175

    Article  CAS  PubMed  Google Scholar 

  • Gordon AM, Forssberg H, Iwasaki N (1994) Formation and lateralization of internal representations underlying motor commands during precision grip. Neuropsychologia 32:555–568

    Article  CAS  PubMed  Google Scholar 

  • Gordon AM, Forssberg H, Johansson RS, Westling G (1991) Visual size cues in the programming of manipulative forces during precision grip. Exp Brain Res 83:477–482

    CAS  PubMed  Google Scholar 

  • Gordon AM, Westling G, Cole KJ, Johansson RS (1993) Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol 69:1789–1796

    CAS  PubMed  Google Scholar 

  • Hager-Ross C, Johansson RS (1996) Nondigital afferent input in reactive control of fingertip forces during precision grip. Exp Brain Res 110:131–141

    CAS  PubMed  Google Scholar 

  • Hermsdörfer J, Hagl E, Nowak DA, Marquardt C (2003) Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol 114:915–929

    Article  PubMed  Google Scholar 

  • Hermsdörfer J, Li Y, Randerath J, Goldenberg G, Eidenmuller S (2011) Anticipatory scaling of grip forces when lifting objects of everyday life. Exp Brain Res 212:19–31. doi:10.1007/s00221-011-2695-y

    Article  PubMed  Google Scholar 

  • Hsu HY, Lin CF, Su FC, Kuo HT, Chiu HY, Kuo LC (2012) Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients. J Neuroeng Rehabil 9:26. doi:10.1186/1743-0003-9-26

    Article  PubMed  PubMed Central  Google Scholar 

  • Imbach LL, Baumann-Vogel H, Baumann CR, Sürücü O, Hermsdörfer J, Sarnthein J (2015) Adaptive grip force is modulated by subthalamic beta activity in Parkinson’s disease patients. NeuroImage: Clin 9:450–457. doi:http://dx.doi.org/10.1016/j.nicl.2015.09.010

    Google Scholar 

  • Jenmalm P, Johansson RS (1997) Visual and somatosensory information about object shape control manipulative fingertip forces. J Neurosci 17:4486–4499

    CAS  PubMed  Google Scholar 

  • Jenmalm P, Schmitz C, Forssberg H, Ehrsson HH (2006) Lighter or heavier than predicted: neural correlates of corrective mechanisms during erroneously programmed lifts. J Neurosci 26:9015–9021. doi:10.1523/JNEUROSCI.5045-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10:345–359. doi:10.1038/nrn2621

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Westling G (1987) Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res 66:141–154

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Westling G (1988) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res 71:59–71

    CAS  PubMed  Google Scholar 

  • Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188. doi:10.1016/S0079-6123(03)42013-X

    Article  PubMed  Google Scholar 

  • Lashley KS (1930) Basic neural mechanisms in behaviour psychological review. Psychol Rev 37:1–24

    Article  Google Scholar 

  • Li Y, Randerath J, Goldenberg G, Hermsdörfer J (2007) Grip forces isolated from knowledge about object properties following a left parietal lesion. Neurosci Lett:187–191. doi:10.1016/j.neulet.2007.09.008

    Google Scholar 

  • Li Y, Randerath J, Goldenberg G, Hermsdörfer J (2011) Size-weight illusion and anticipatory grip force scaling following unilateral cortical brain lesion. Neuropsychologia 49:914–923. doi:10.1016/j.neuropsychologia.2011.02.018

    Article  PubMed  Google Scholar 

  • Loh MN, Kirsch L, Rothwell JC, Lemon RN, Davare M (2010) Information about the weight of grasped objects from vision and internal models interacts within the primary motor cortex. J Neurosci 30:6984–6990. doi:10.1523/JNEUROSCI.6207-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukos J, Ansuini C, Santello M (2007) Choice of contact points during multidigit grasping: effect of predictability of object center of mass location. J Neurosci 27:3894–3903. doi:10.1523/JNEUROSCI.4693-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Lukos JR, Choi JY, Santello M (2013) Grasping uncertainty: effects of sensorimotor memories on high-level planning of dexterous manipulation. J Neurophysiol 109:2937–2946. doi:10.1152/jn.00060.2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Marneweck M, Knelange E, Lee-Miller T, Santello M, Gordon AM (2015) Generalization of dexterous manipulation is sensitive to the frame of reference in which it is learned. PLoS ONE 10:e0138258. doi:10.1371/journal.pone.0138258

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonnell MN, Hillier SL, Ridding MC, Miles TS (2006) Impairments in precision grip correlate with functional measures in adult hemiplegia. Clin Neurophysiol 117:1474–1480. doi:10.1016/j.clinph.2006.02.027

    Article  PubMed  Google Scholar 

  • Nowak DA, Berner J, Herrnberger B, Kammer T, Gron G, Schonfeldt-Lecuona C (2009) Continuous theta-burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting. Cortex 45:473–482

    Article  PubMed  Google Scholar 

  • Nowak DA, Glasauer S, Hermsdörfer J (2013) Force control in object manipulation–a model for the study of sensorimotor control strategies. Neurosci Biobehav Rev 37:1578–1586. doi:10.1016/j.neubiorev.2013.06.003

    Article  PubMed  Google Scholar 

  • Nowak DA, Grefkes C, Dafotakis M, Kust J, Karbe H, Fink GR (2007a) Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke. Eur J Neurosci 25:3173–3184. doi:10.1111/j.1460-9568.2007.05551.x

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J (2003) Sensorimotor memory and grip force control: does grip force anticipate a self-produced weight change when drinking with a straw from a cup? Eur J Neurosci 18:2883–2892

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J, Topka H (2003) Deficits of predictive grip force control during object manipulation in acute stroke. J Neurol 250:850–860. doi:10.1007/s00415-003-1095-z

    Article  PubMed  Google Scholar 

  • Nowak DA, Koupan C, Hermsdörfer J (2007b) Formation and decay of sensorimotor and associative memory in object lifting. Eur J Appl Physiol 100:719–726. doi:10.1007/s00421-007-0467-y

    Article  PubMed  Google Scholar 

  • Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J (2007c) The role of the cerebellum for predictive control of grasping. Cerebellum 6:7–17

    Article  PubMed  Google Scholar 

  • Nowak DA, Voss M, Huang YZ, Wolpert DM, Rothwell JC (2005) High-frequency repetitive transcranial magnetic stimulation over the hand area of the primary motor cortex disturbs predictive grip force scaling. Eur J Neurosci 22:2392–2396. doi:10.1111/j.1460-9568.2005.04425.x

    Article  PubMed  Google Scholar 

  • Quaney BM, He J, Timberlake G, Dodd K, Carr C (2010) Visuomotor training improves stroke-related ipsilesional upper extremity impairments. Neurorehabil Neural Repair 24:52–61. doi:10.1177/1545968309341646

    Article  PubMed  Google Scholar 

  • Quaney BM, Perera S, Maletsky R, Luchies CW, Nudo RJ (2005) Impaired grip force modulation in the ipsilesional hand after unilateral middle cerebral artery stroke. Neurorehabil Neural Repair 19:338–349. doi:10.1177/1545968305282269

    Article  PubMed  Google Scholar 

  • Quaney BM, Rotella DL, Peterson C, Cole KJ (2003) Sensorimotor memory for fingertip forces: evidence for a task-independent motor memory. J Neurosci 23:1981–1986

    CAS  PubMed  Google Scholar 

  • Rabe K, Brandauer B, Li Y, Gizewski ER, Timmann D, Hermsdörfer J (2009) Size-weight illusion, anticipation and adaptation of fingertip forces in patients with cerebellar degeneration. J Neurophysiol 101:569–579. doi:10.1152/jn.91068.2008

    Article  CAS  PubMed  Google Scholar 

  • Raghavan P, Krakauer JW, Gordon AM (2006) Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome. Brain 129:1415–1425. doi:10.1093/brain/awl070

    Article  PubMed  PubMed Central  Google Scholar 

  • Rost KR, Nowak DA, Timmann D, Hermsdörfer J (2005) Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol 116:1405–1414

    Article  PubMed  Google Scholar 

  • Salimi I, Frazier W, Reilmann R, Gordon AM (2003) Selective use of visual information signaling objects’ center of mass for anticipatory control of manipulative fingertip forces. Exp Brain Res 150:9–18. doi:10.1007/s00221-003-1394-8

    Article  PubMed  Google Scholar 

  • Salimi I, Hollender I, Frazier W, Gordon AM (2000) Specificity of internal representations underlying grasping. J Neurophysiol 84:2390–2397

    CAS  PubMed  Google Scholar 

  • Schaefer S, Mutha P, Haaland K, Sainburg R (2012) Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cereb Cortex 22:1407–1419. doi:10.1093/cercor/bhr237

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitz C, Jenmalm P, Ehrsson HH, Forssberg H (2005) Brain activity during predictable and unpredictable weight changes when lifting objects. J Neurophysiol 93:1498–1509

    Article  PubMed  Google Scholar 

  • Sunderland A, Bowers MP, Sluman SM, Wilcock DJ, Ardron ME (1999) Impaired dexterity of the ipsilateral hand after stroke and the relationship to cognitive deficit. Stroke 30:949–955

    Article  CAS  PubMed  Google Scholar 

  • Taubert M, Dafotakis M, Sparing R, Eickhoff S, Leuchte S, Fink GR, Nowak DA (2010) Inhibition of the anterior intraparietal area and the dorsal premotor cortex interfere with arbitrary visuo-motor mapping. Clin Neurophysiol 121:408–413

    Article  PubMed  Google Scholar 

  • van Nuenen BFL, Kuhtz-Buschbeck J, Schulz C, Bloem BR, Siebner HR (2012) Weight-specific anticipatory coding of grip force in human dorsal premotor cortex. J Neurosci 32:5272–5283

    Article  PubMed  Google Scholar 

  • Wenzelburger R, Kopper F, Frenzel A et al (2005) Hand coordination following capsular stroke. Brain 128:64–74. doi:10.1093/brain/awh317

    Article  PubMed  Google Scholar 

  • White O, Davare M, Andres M, Olivier E (2013) The role of left supplementary motor area in grip force scaling. PLoS ONE 8:e83812. doi:10.1371/journal.pone.0083812

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Gordon AM, Fu Q, Santello M (2010) Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces. J Neurophysiol 103:2953–2964. doi:10.1152/jn.00140.2010

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Hermsdörfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Schneider, T., Hermsdörfer, J. (2016). Anticipation in Object Manipulation: Behavioral and Neural Correlates. In: Laczko, J., Latash, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-319-47313-0_10

Download citation

Publish with us

Policies and ethics