Skip to main content

Modularity for Motor Control and Motor Learning

  • Chapter
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 957))

Abstract

How the central nervous system (CNS) overcomes the complexity of multi-joint and multi-muscle control and how it acquires or adapts motor skills are fundamental and open questions in neuroscience. A modular architecture may simplify control by embedding features of both the dynamic behavior of the musculoskeletal system and of the task into a small number of modules and by directly mapping task goals into module combination parameters. Several studies of the electromyographic (EMG) activity recorded from many muscles during the performance of different tasks have shown that motor commands are generated by the combination of a small number of muscle synergies, coordinated recruitment of groups of muscles with specific amplitude balances or activation waveforms, thus supporting a modular organization of motor control. Modularity may also help understanding motor learning. In a modular architecture, acquisition of a new motor skill or adaptation of an existing skill after a perturbation may occur at the level of modules or at the level of module combinations. As learning or adapting an existing skill through recombination of modules is likely faster than learning or adapting a skill by acquiring new modules, compatibility with the modules predicts learning difficulty. A recent study in which human subjects used myoelectric control to move a mass in a virtual environment has tested this prediction. By altering the mapping between recorded muscle activity and simulated force applied on the mass, as in a complex surgical rearrangement of the tendons, it has been possible to show that it is easier to adapt to a perturbation that is compatible with the muscle synergies used to generate hand force than to a similar but incompatible perturbation. This result provides direct support for a modular organization of motor control and motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajemian R, D’Ausilio A, Moorman H, Bizzi E (2013) A theory for how sensorimotor skills are learned and retained in noisy and nonstationary neural circuits. Proc Natl Acad Sci USA 110:E5078–E5087. doi:10.1073/pnas.1320116110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessandro C, Carbajal JP, d’Avella A (2013) A computational analysis of motor synergies by dynamic response decomposition. Front Comput Neurosci 7:191. doi:10.3389/fncom.2013.00191

    Article  PubMed  Google Scholar 

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5:2318–2330

    CAS  PubMed  Google Scholar 

  • Berger DJ, Gentner R, Edmunds T, Pai DK, d’Avella A (2013) Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J Neurosci 33:12384–12394. doi:10.1523/JNEUROSCI.0122-13.2013

    Article  CAS  PubMed  Google Scholar 

  • Bernstein N (1967) The co-ordination and regulation of movement. Pergamon, Oxford

    Google Scholar 

  • Bizzi E, Cheung VC, d’Avella A, Saltiel P, Tresch M (2008) Combining modules for movement. Brain Res Rev 57:125–133. doi:10.1016/j.brainresrev.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  • Bizzi E, D’Avella A, Saltiel P, Tresch M (2002) Modular organization of spinal motor systems. Neuroscientist 8:437–442

    Article  CAS  PubMed  Google Scholar 

  • Bizzi E, Mussa-Ivaldi FA, Giszter SF (1991) Computations underlying the execution of movement: a biological perspective. Science 253:287–291

    Article  CAS  PubMed  Google Scholar 

  • Buchanan TS, Almdale DPJ, Lewis JL, Rymer WZ (1986) Characteristics of synergic relations during isometric contractions of human elbow muscles. J Neurophysiol 56:1225–1241

    CAS  PubMed  Google Scholar 

  • d’Avella A, Tresch MC (2002) Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems, vol 14. MIT Press, Cambridge, MA, pp 141–148

    Google Scholar 

  • d’Avella A, Lacquaniti F (2013) Control of reaching movements by muscle synergy combinations. Front Comput Neurosci 7:42. doi:10.3389/fncom.2013.00042

    PubMed  PubMed Central  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308

    Article  PubMed  Google Scholar 

  • d’Avella A, Portone A, Fernandez L, Lacquaniti F (2006) Control of fast-reaching movements by muscle synergy combinations. J Neurosci 26:7791–7810. doi:10.1523/JNEUROSCI.0830-06.2006

    Article  PubMed  Google Scholar 

  • d’Avella A, Fernandez L, Portone A, Lacquaniti F (2008) Modulation of phasic and tonic muscle synergies with reaching direction and speed. J Neurophysiol 100:1433–1454. doi:10.1152/jn.01377.2007

    Article  PubMed  Google Scholar 

  • Delis I, Panzeri S, Pozzo T, Berret B (2014) A unifying model of concurrent spatial and temporal modularity in muscle activity. J Neurophysiol 111:675–693. doi:10.1152/jn.00245.2013

    Article  PubMed  Google Scholar 

  • Dominici N, Ivanenko YP, Cappellini G et al (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999. doi:10.1126/science.1210617

    Article  CAS  PubMed  Google Scholar 

  • Flanders M (1991) Temporal patterns of muscle activation for arm movements in three-dimensional space. J Neurosci 11:2680–2693

    CAS  PubMed  Google Scholar 

  • Flanders M, Pellegrini JJ, Soechting JF (1994) Spatial/temporal characteristics of a motor pattern for reaching. J Neurophysiol 71:811–813

    CAS  PubMed  Google Scholar 

  • Flanders M, Pellegrini JJ, Geisler SD (1996) Basic features of phasic activation for reaching in vertical planes. Exp Brain Res 110:67–79

    Article  CAS  PubMed  Google Scholar 

  • Gentner R, Edmunds T, Pai DK, d’Avella A (2013) Robustness of muscle synergies during visuomotor adaptation. Front Comput Neurosci 7:120. doi:10.3389/fncom.2013.00120

    Article  PubMed  PubMed Central  Google Scholar 

  • Giszter SF (2015) Motor primitives—new data and future questions. Curr Opin Neurobiol 33:156–165. doi:10.1016/j.conb.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  • Giszter SF, Hart CB, Silfies SP (2010) Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man. Exp Brain Res 200:283–306. doi:10.1007/s00221-009-2016-x

    Article  PubMed  Google Scholar 

  • Gottlieb GL, Song Q, Almeida GL, Hong DA, Corcos D (1997) Directional control of planar human arm movement. J Neurophysiol 78:2985–2998

    CAS  PubMed  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology: section I. The nervous system. American Physiological Society, Bethesda, MD, pp 1179–1236

    Google Scholar 

  • Hart CB, Giszter SF (2004) Modular premotor drives and unit bursts as primitives for frog motor behaviors. J Neurosci 24:5269–5282. doi:10.1523/JNEUROSCI.5626-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Hollerbach MJ, Flash T (1982) Dynamic interactions between limb segments during planar arm movement. Biol Cybern 44:67–77

    Article  CAS  PubMed  Google Scholar 

  • Ivanenko YP, Grasso R, Zago M et al (2003) Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J Neurophysiol 90:3555–3565

    Article  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein Breteler MD, Simura KJ, Flanders M (2007) Timing of muscle activation in a hand movement sequence. Cereb Cortex 17:803–815. doi:10.1093/cercor/bhk033

    Article  PubMed  Google Scholar 

  • Kutch JJ, Valero-Cuevas FJ (2012) Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput Biol 8:e1002434. doi:10.1371/journal.pcbi.1002434. PCOMPBIOL-D-11-01006 [pii]

    Google Scholar 

  • Lacquaniti F, Ivanenko YP, Zago M (2012) Patterned control of human locomotion. J Physiol 590:2189–2199. doi:10.1113/jphysiol.2011.215137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacquaniti F, Soechting JF, Terzuolo CA (1982) Some factors pertinent to the organization and control of arm movements. Brain Res 252:394–397. doi:10.1016/0006-8993(82)90410-3

    Article  CAS  PubMed  Google Scholar 

  • Lacquaniti F, Soechting JF, Terzuolo SA (1986) Path constraints on point-to-point arm movements in three-dimensional space. Neuroscience 17:313–324

    Article  CAS  PubMed  Google Scholar 

  • Latash ML (2012) Fundamentals of motor control. Academic Press

    Google Scholar 

  • Lee WA (1984) Neuromotor synergies as a basis for coordinated intentional action. J Mot Behav 16:135–170

    Article  CAS  PubMed  Google Scholar 

  • Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  CAS  PubMed  Google Scholar 

  • Macpherson JM (1991) How flexible are muscle synergies? In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues. Wiley, Chichester, pp 33–47

    Google Scholar 

  • Maier MA, Hepp-Reymond MC (1995) EMG activation patterns during force production in precision grip. II. Muscular synergies in the spatial and temporal domain. Exp Brain Res 103:123–136

    Article  CAS  PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain 119(Pt 4):1199–1211

    Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    Article  CAS  PubMed  Google Scholar 

  • Ruckert E, d’Avella A (2013) Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems. Front Comput Neurosci 7:138. doi:10.3389/fncom.2013.00138

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo M, D’Andola M, Portone A, Lacquaniti F, d’Avella A (2014) Dimensionality of joint torques and muscle patterns for reaching. Front Comput Neurosci 8:24. doi:10.3389/fncom.2014.00024

    Article  PubMed  PubMed Central  Google Scholar 

  • Saltiel P, Wyler-Duda K, D’Avella A, Tresch MC, Bizzi E (2001) Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. J Neurophysiol 85:605–619

    CAS  PubMed  Google Scholar 

  • Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115

    CAS  PubMed  Google Scholar 

  • Sherrington CS (1948) The integrative action of the nervous system. Univeristy Press, Cambridge

    Google Scholar 

  • Soechting JF, Lacquaniti F (1981) Invariant characteristics of a pointing movement in man. J Neurosci 1:710–720

    CAS  PubMed  Google Scholar 

  • Soechting JF, Lacquaniti F (1989) An assessment of the existence of muscle synergies during load perturbations and intentional movements of the human arm. Exp Brain Res 74:535–548

    Article  CAS  PubMed  Google Scholar 

  • Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, Kesar TM (2015) Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 86:38–54. doi:10.1016/j.neuron.2015.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93:609–613. doi:10.1152/jn.00681.2004

    Article  PubMed  Google Scholar 

  • Tresch MC, Jarc A (2009) The case for and against muscle synergies. Curr Opin Neurobiol 19:601–607. doi:10.1016/j.conb.2009.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tresch MC, Saltiel P, Bizzi E (1999) The construction of movement by the spinal cord. Nat Neurosci 2:162–167

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea d’Avella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

d’Avella, A. (2016). Modularity for Motor Control and Motor Learning. In: Laczko, J., Latash, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-319-47313-0_1

Download citation

Publish with us

Policies and ethics