Skip to main content

Investigation of Landmark-Based Pedestrian Navigation Processes with a Mobile Eye Tracking System

  • Conference paper
  • First Online:
Progress in Location-Based Services 2016

Abstract

Eye movements provide information on the mental processing of landmark objects while navigating. The present study investigates landmark-based navigation by pedestrians in real world environments using mobile eye tracking technology. The goal of the study is to identify whether landmarks on maps optimize the navigation procedure and the usage of a map, and imprint the cognitive map sustainably. Two independent test groups navigated through unfamiliar urban environment and were subsequently interviewed. One group had landmark visualized on a map as an additional aid, the control group did not. The results show that objects that are focused longer and more frequently transfer onto the mental map. Upon recalling objects present in the surroundings, on average 8.3 landmarks were named per interview by the landmark group, compared to 7.0 for the control group. For the control group, the usage and duration of observation of the map was thereby approximately 1.7 times greater than for the landmark group. Following the memory test, the participants in the landmark group remembered significantly more objects and located these correctly as compared to the control group. In summary, the results show that the visualization of landmarks on maps optimizes the use of maps for navigation, whereby more landmark objects transfer to long-term memory and the mental map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez G A, Cavanagh P (2004) The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15, 106–111.

    Article  Google Scholar 

  • Andersen N E, Dahmani L, Konishi K, Bohbot V D (2012) Eye tracking, strategies, and sex differences in virtual navigation. Neurobiology of learning and memory, 97(1), 81–89.

    Article  Google Scholar 

  • Andersson R, Nyström M, Holmqvist K (2010) Sampling frequency and eye-tracking measures: how speed affects durations, latencies, and more. Journal of Eye Movement Research, 3(3), 6.

    Google Scholar 

  • Ballard D H, Hayhoe M M (2009) Modelling the role of task in the control of gaze. Visual cognition, 17(6–7), 1185–1204.

    Article  Google Scholar 

  • Barkowsky T (2001) Mental processing of geographic knowledge. In Spatial Information Theory, 371–386. Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Bollmann J, Heidmann F, Johann M (1997) Kartographische Bildschirmkommunikation: Methodische Ansätze zur empirischen Untersuchung raumbezogener Informationsprozesse. Aktuelle Forschungen aus dem Fachbereich VI. Geographie/Geowissenschaften, 267–284.

    Google Scholar 

  • Borji A, Itti L (2014) Defending Yarbus: Eye movements reveal observers’ task. Journal of vision, 14(3), 29.

    Article  Google Scholar 

  • Borji A, Lennartz A, Pomplun M (2015) What do eyes reveal about the mind?: Algorithmic inference of search targets from fixations. Neurocomputing, 149, 788–799.

    Article  Google Scholar 

  • Brady T F, Konkle T, Alvarez G A (2011) A review of visual memory capacity: Beyond individual items and toward structured representations. In: Journal of vision, 11(5), 4.

    Article  Google Scholar 

  • Brady T F, Konkle T, Alvarez G A, Oliva, A (2008) Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences, 105, 14325–14329.

    Article  Google Scholar 

  • Brus J, Vondrakova A, Vozenilek V (Eds.) (2015) Modern Trends in Cartography. Selected Papers of CARTOCON 2014. Springer Cham Heidelberg, New York, Dordrecht, London.

    Google Scholar 

  • Buswell G (1935) How people look at pictures. Chicago: University of Chicago Press.

    Google Scholar 

  • Caduff D, Timpf S (2008) On the assessment of landmark salience for human navigation. Cognitive processing, 9(4), 249–267.

    Article  Google Scholar 

  • Cowan N (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. In: Behavioral and Brain Sciences, 24, 87–185.

    Article  Google Scholar 

  • Cowan N (2008) What are the differences between long-term, short-term, and working memory? In: Progress in brain research, 169, 323–338.

    Article  Google Scholar 

  • Dickmann F, Edler D, Bestgen A-K, Kuchinke L (2015) Auswertung von Heatmaps in der Blickbewegungsmessung am Beispiel einer Untersuchung zum Positionsgedächtnis. In: Kartographische Nachrichten, 65 (5), 272–280.

    Google Scholar 

  • Duchowski A (2007) Eye tracking methodology: Theory and practice (Vol. 373). Springer Science & Business Media.

    Google Scholar 

  • Duckham M, Winter S, Robinson M (2010) Including Landmarks in Routing Instructions, in: Gartner, G. Journal of Location Based Services, volume 4, issue 1, 28–52. Taylor & Francis, London.

    Google Scholar 

  • Edler D, Bestgen A K, Kuchinke L, Dickmann F (2014) Grids in topographic maps reduce distortions in the recall of learned object locations. PloS one, 9(5).

    Google Scholar 

  • Elias B, Paelke V (2008) User-centered design of landmark visualizations. In Map-based mobile services, 33–56. Springer Berlin Heidelberg.

    Google Scholar 

  • Fabrikant S I (2005) Towards an Understanding of Geovisualization with Dynamic Displays: Issues and Prospects. In AAAI Spring Symposium: Reasoning with Mental and External Diagrams: Computational Modeling and Spatial Assistance, 6–11.

    Google Scholar 

  • Fabrikant S I, Hespanha S R, Hegarty M (2010) Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Annals of the Association of American Geographers, 100(1), 13–29.

    Google Scholar 

  • Fotios S, Uttley J, Yang B (2015) Using eye-tracking to identify pedestrians’ critical visual tasks. Part 2. Fixation on pedestrians. Lighting Research and Technology, 47(2), 149–160.

    Article  Google Scholar 

  • Foulsham T, Walker E, Kingstone A (2011) The where, what and when of gaze allocation in the lab and the natural environment. Vision research, 51(17), 1920–1931.

    Article  Google Scholar 

  • Franke C, Schweikart J (2016) Mental Representation of Landmarks on Maps – Investigating Cartographic Visualization Methods with Eye Tracking Technology. In: Special Issue on Eye Tracking for Spatial Research in Spatial Cognition and Computation: An Interdisciplinary Journal. 1–19.

    Google Scholar 

  • Gallagher P, Neave N, Hamilton C, Gray J M (2006) Sex differences in object location memory: Some further methodological considerations. Learning and Individual Differences, 16(4), 277–290.

    Article  Google Scholar 

  • Gillner S, Mallot H A (1998) Navigation and Acquisition of Spatial Knowledge in a Virtual Maze. Journal of Cognitive Neuroscience, 10(4), 445–463.

    Article  Google Scholar 

  • Golledge R (1999) Human Wayfinding and Cognitive Maps, in: Wayfinding Behavior, John Hopkins Press, 5–46.

    Google Scholar 

  • Hamid S N, Stankiewicz B, Hayhoe M (2010) Gaze patterns in navigation: Encoding information in large-scale environments. Journal of Vision, 10, 1–11.

    Article  Google Scholar 

  • Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H, Van de Weijer J (2011) Eye tracking: A comprehensive guide to methods and measures. Oxford University Press.

    Google Scholar 

  • Hornof A J, Halverson T (2002) Cleaning up systematic error in eye-tracking data by using required fixation locations. In: Behavior Research Methods, Instruments, & Computers, 34(4), 592–604.

    Article  Google Scholar 

  • Ishikawa T, Montello D R (2006) Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology 52(2): 93–129.

    Article  Google Scholar 

  • Janzen G, Jansen C (2010) A neural wayfinding mechanism adjusts for ambiguous landmark information. NeuroImage, 52(1), 364–370.

    Article  Google Scholar 

  • Just M A, Carpenter P A (1980) A theory of reading: From eye fixations to comprehension. Psychological review, 87, 329–354.

    Article  Google Scholar 

  • Kettunen P (2014) Analysing landmarks in nature and elements of geospatial images to support wayfinding. Academic Dissertation in Geoinformatics at Aalto University School of Engineering.

    Google Scholar 

  • Kettunen P, Sarjakoski T, Sarjakoski L T (2015) Elements of Geospatial Images to Support Cognitive Tasks in Wayfinding. 27th International Cartographic Conference, ICC 2015.

    Google Scholar 

  • Kiefer P, Giannopoulos I, Raubal M (2014) Where am I? Investigating map matching during self‐localization with mobile eye tracking in an urban environment. Transactions in GIS, 18(5), 660–686.

    Article  Google Scholar 

  • Kiefer P, Straub F, Raubal M (2012) Towards location-aware mobile eye tracking. In Proceeings of the Symposium on Eye Tracking Research and Applications, 313–316. ACM.

    Google Scholar 

  • Klippel A, Richter K F, Hansen S (2005) Structural salience as a landmark. In Workshop mobile maps.

    Google Scholar 

  • Klippel A, Winter S (2005) Structural salience of landmarks for route directions. In Spatial information theory 347–362. Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Koesling H (2003) Visual perception of location, orientation and length: an eye-movement approach. Dissertation. – Bielefeld, Germany.

    Google Scholar 

  • Lee P, Tappe H, Klippel A (2002) Acquisition of landmark knowledge from static and dynamic presentation of route maps. KI, 16(4), 32–34.

    Google Scholar 

  • Liao H, Dong W, Peng C, Liu H (2016) Exploring differences of visual attention in pedestrian navigation when using 2D maps and 3D geo-browsers. Cartography and Geographic Information Science, 1–17.

    Google Scholar 

  • Liverance B M, Scholl B J (2015) Object persistence enhances spatial navigation: A case study in smartphone vision science. Psychological Science, 26, 955–963

    Google Scholar 

  • Liversedge S P, Meadmore K, Corck-Adelman D, Shih S I, Pollatsek A (2011) Eye movements and memory for objects and their locations. Studies of Psychology and Behavior, 9(1), 7–14.

    Google Scholar 

  • Lovelace K L, Hegarty M, Montello, D R (1999) Elements of good route directions in familiar and unfamiliar environments. In International Conference on Spatial Information Theory (65–82). Springer Berlin Heidelberg.

    Google Scholar 

  • Luck S J, Vogel E K (1997) The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.

    Article  Google Scholar 

  • May A J, Ross T, Bayer, S H, Tarkiainen M J (2003) Pedestrian navigation aids: information requirements and design implications. Personal and Ubiquitous Computing, 7, 331–338.

    Article  Google Scholar 

  • McNamara T P, Sluzenski J, Rump B (2008) Human spatial memory and navigation. Cognitive psychology of memory, 2, 157–178.

    Google Scholar 

  • Michon P-E, Denis M (2001) When and why are visual landmarks used in giving directions? In Montello, D. R., editor, Spatial Information Theory, volume 2205 of Lecture Notes in Computer Science, pages 292–305. Springer, Berlin.

    Chapter  Google Scholar 

  • Miller G A (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. In: Psychological Review 63 (2), 81–97.

    Article  Google Scholar 

  • Ohm C, Müller M, Ludwig B, Bienk S (2014) Where is the Landmark? Eye Tracking Studies in Large-Scale Indoor Environments. In: 2nd International Workshop on Eye Tracking for Spatial Research co-located with the 8th International Conference on Geographic Information Science (GIScience 2014), September 23, 2014, Vienna, Austria.

    Google Scholar 

  • Ooms K, De Maeyer P, Fack V, Van Assche E, Witlox F (2012) Interpreting maps through the eyes of expert and novice users. International Journal of Geographical Information Science, 26, 1773–1788.

    Article  Google Scholar 

  • Rahman Q, Wilson GD, Abrahams S (2003) Sexual orientation related differences in spatial memory. J Int Neuropsychol Soc 9: 376–383.

    Article  Google Scholar 

  • Raubal M (2009) Cognitive engineering for geographic information science. Geography Compass, 3(3), 1087–1104.

    Article  Google Scholar 

  • Raubal M, Winter S (2002) Enriching wayfinding instructions with local landmarks (243–259). Springer Berlin Heidelberg.

    Google Scholar 

  • Rayner K (2009) Eye movements and attention in reading, scene perception, and visual search, The Quarterly Journal of Experimental Psychology 62:1457–1506.

    Article  Google Scholar 

  • Rehri K, Häusler E, Leitinger S (2010) Comparing the effectiveness of GPS-enhanced voice guidance for pedestrians with metric- and landmark-based instruction sets. Geographic information science, 189–203. Springer Berlin Heidelberg

    Google Scholar 

  • Richter K F, Winter S (2014) Landmarks. GIScience for Intelligent Services. - Springer, Cham, Heidelberg, New York, Dordrecht, London.

    Book  Google Scholar 

  • Röser F, Krumnack A, Hamburger K, Knauff M (2012) A four factor model of landmark sali-ence-A new approach. In Proceedings of the 11th International Conference on Cognitive Modeling (ICCM), 82–87.

    Google Scholar 

  • Ross T, May A, Thompson S (2004) The use of landmarks in pedestrian navigation instruc-tions and the effects of context. In: Mobile Human-Computer Interaction-MobileHCI 2004, 300–304. - Springer, Berlin, Heidelberg.

    Google Scholar 

  • Ruckpaul A, Fürstenhöfer T, Matthiesen S (2015) Combination of Eye Tracking and Think-Aloud Methods in Engineering Design Research. In Design Computing and Cognition’14 (pp. 81–97). Springer International Publishing.

    Google Scholar 

  • Salvucci D D (1999) Mapping eye movements to cognitive processes (Doctoral dissertation, Carnegie Mellon University).

    Google Scholar 

  • Salvucci D D, Goldberg J H (2000) Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 symposium on Eye tracking research and applications; Santa Barbara, CA, USA, 71–78.

    Google Scholar 

  • Servatius K (2009) Dynamische Unterstützungsformen in kartographischen Medien. Selbstverl. d. Geograph. Ges. Trier, 41.

    Google Scholar 

  • Siegel A W, White S H (1975) The Development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9–55.

    Google Scholar 

  • Standing L (1973) Learning 10,000 pictures. Q J Exp Psychol 25:207–222.

    Article  Google Scholar 

  • Strasburger H, Malania M (2013) Source confusion is a major cause of crowding. Journal of Vision, 13(1), 24.

    Article  Google Scholar 

  • Tom A C, Tversky B (2012) Remembering routes: streets and landmarks. Applied cognitive psychology, 26(2), 182–193.

    Google Scholar 

  • Viaene P, Ooms K, Vansteenkiste P, Lenoir M, De Maeyer P (2014) The Use of Eye Tracking in Search of Indoor Landmarks.

    Google Scholar 

  • Viviani P (1990) Eye movements in visual search: Cognitive, perceptual, and motor control aspects. In E. Kowler (Ed.), Eye Movements and their Role in Visual and Cognitive Processes (353–393). New York: Elsevier Science Publishing.

    Google Scholar 

  • von Stülpnagel R, Frankenstein J (2015) Configurational salience of landmarks: an analysis of sketch maps using Space Syntax. Cognitive processing, 16(1), 437–441.

    Article  Google Scholar 

  • Voyer D, Postma A, Brake B, Imperato-McGinley J (2007) Gender differences in object location memory: a metaanalysis. Psychon Bull Rev 14: 23–38.

    Article  Google Scholar 

  • Wiener J M, Hölscher C, Büchner S, Konieczny L (2012) Gaze behaviour during space perception and spatial decision making. Psychological research, 76(6), 713–729.

    Google Scholar 

  • Wolbers T, Hegarty M (2010) What determines our navigational abilities? Trends in cognitive sciences, 14(3), 138–146.

    Article  Google Scholar 

  • Xu Y, Chun M M (2009) Selecting and perceiving multiple visual objects. Trends in cognitive sciences, 13(4), 167–174.

    Article  Google Scholar 

  • Yarbus A L (1967) Eye movements and vision. New York: Plenum.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad Franke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Franke, C., Schweikart, J. (2017). Investigation of Landmark-Based Pedestrian Navigation Processes with a Mobile Eye Tracking System. In: Gartner, G., Huang, H. (eds) Progress in Location-Based Services 2016. Lecture Notes in Geoinformation and Cartography(). Springer, Cham. https://doi.org/10.1007/978-3-319-47289-8_6

Download citation

Publish with us

Policies and ethics