Skip to main content

Best-Fit Segmentation Created Using Flood-Based Iterative Thinning

  • Conference paper
  • First Online:
Image Processing and Communications Challenges 8 (IP&C 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 525))

Included in the following conference series:

Abstract

Classical methods of segmentation that use binarization in the preprocessing stage often do not provide the precise delineation of the range of objects. For example, this might be useful for images of the corneal endothelium obtained with specular or confocal microscopy. This article presents a solution that makes it possible to adjust the course of the segmentation in the valleys between cells. The algorithm is a combination of iterative thinning and a watershed algorithm that works by the gradual removal of points with increasingly lower brightness levels. The article also contains examples of output images and quality tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charłampowicz, K., Reska, D., Boldak, C.: Automatic segmentation of corneal endothelial cells using active contours. Adv. Comput. Sci. Res. 11, 47ā€“60 (2014)

    Google ScholarĀ 

  2. Cheung, S.W., Cho, P.: Endothelial cell analysis using the Topcon SP-1000 non-contact specular microscope and IMAGEnet system. Clin. Exp. Optom. 81(1), 1ā€“7 (1998)

    ArticleĀ  Google ScholarĀ 

  3. Couprie, M., Bezerra, F.N., Bertrand, G.: Topological operators for grayscale image processing. J. Electron. Imaging 10(4), 1003ā€“1015 (2001)

    ArticleĀ  Google ScholarĀ 

  4. Couprie, M., Bezerra, N., Bertrand, G.: A parallel thinning algorithm for grayscale images. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 71ā€“82. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37067-0_7

    ChapterĀ  Google ScholarĀ 

  5. Doughty, M.: The ambiguous coefficient of variation: polymegethism of the corneal endothelium and central corneal thickness. Int. Cont. Lens Clin. 17(9ā€“10), 240ā€“248 (1990)

    ArticleĀ  Google ScholarĀ 

  6. Doughty, M.: Concerning the symmetry of the ā€˜hexagonalā€™ cells of the corneal endothelium. Exp. Eye Res. 55(1), 145ā€“154 (1992)

    ArticleĀ  Google ScholarĀ 

  7. Foracchia, M., Ruggeri, A.: Cell contour detection in corneal endothelium in-vivo microscopy. In: Proceedings of the 22nd Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 2, pp. 1033ā€“1035. IEEE (2000)

    Google ScholarĀ 

  8. Gronkowska-Serafin, J., Piorkowski, A.: Corneal endothelial grid structure factor based on coefficient of variation of the cell sides lengths. In: Choras, R.S. (ed.) Image Processing and Communications Challenges 5. Advances in Intelligent Systems and Computing, vol. 233, pp. 13ā€“19. Springer, Heidelberg (2014)

    ChapterĀ  Google ScholarĀ 

  9. Habrat, K., Habrat, M., Gronkowska-Serafin, J., PiĆ³rkowski, A.: Cell detection in corneal endothelial images using directional filters. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. AISC, vol. 389, pp. 113ā€“123. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23814-2_14

    ChapterĀ  Google ScholarĀ 

  10. Hachaj, T., Ogiela, M.R.: Application of centerline detection and deformable contours algorithms to segmenting the carotid lumen. J. Electron. Imaging 23(2), 023006ā€“023006 (2014)

    ArticleĀ  Google ScholarĀ 

  11. Jaworek-Korjakowska, J., Tadeusiewicz, R.: Design of a teledermatology system to support the consultation of dermoscopic cases using mobile technologies and cloud platform. Bio-Algorithms Med-Syst. 11(1), 53ā€“58 (2015)

    Google ScholarĀ 

  12. Khan, M.A.U., Niazi, M.K.K., Khan, M.A., Ibrahim, M.T.: Endothelial cell image enhancement using non-subsampled image pyramid. Inf. Technol. J. 6(7), 1057ā€“1062 (2007)

    ArticleĀ  Google ScholarĀ 

  13. Mahzoun, M., Okazaki, K., Mitsumoto, H., Kawai, H., Sato, Y., Tamura, S., Kani, K.: Detection and complement of hexagonal borders in corneal endothelial cell image. Med. Imaging Technol. 14(1), 56ā€“69 (1996)

    Google ScholarĀ 

  14. Mazurek, P., Oszutowska-Mazurek, D.: From the slit-island method to the ising model: analysis of irregular grayscale objects. Int. J. Appl. Math. Comput. Sci. 24(1), 49ā€“63 (2014)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. Nadachi, R., Nunokawa, K.: Automated corneal endothelial cell analysis. In: Proceedings of Fifth Annual IEEE Symposium on Computer-Based Medical Systems, pp. 450ā€“457. IEEE (1992)

    Google ScholarĀ 

  16. Nurzyńska, K., Haraszczuk, R.: Detection and normalization of blown-out illumination areas in grey-scale images. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012. LNCS, vol. 7431, pp. 282ā€“291. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33179-4_28

    ChapterĀ  Google ScholarĀ 

  17. PiĆ³rkowski, A.: A statistical dominance algorithm for edge detection and segmentation of medical images. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 3ā€“14. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39796-2_1

    ChapterĀ  Google ScholarĀ 

  18. PiĆ³rkowski, A., Gronkowskaā€“Serafin, J.: Towards precise segmentation of corneal endothelial cells. In: OrtuƱo, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 240ā€“249. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16483-0_25

    Google ScholarĀ 

  19. Ruggeri, A., Scarpa, F., De Luca, M., Meltendorf, C., Schroeter, J.: A system for the automatic estimation of morphometric parameters of corneal endothelium in alizarine red-stained images. Br. J. Ophthalmol. 94(5), 643ā€“647 (2010)

    ArticleĀ  Google ScholarĀ 

  20. Saeed, K., TabČ©dzki, M., Rybnik, M., Adamski, M.: K3M: a universal algorithm for image skeletonization and a review of thinning techniques. Int. J. Appl. Math. Comput. Sci. 20(2), 317ā€“335 (2010)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  21. Sanchez-Marin, F.: Automatic segmentation of contours of corneal cells. Comput. Biol. Med. 29(4), 243ā€“258 (1999)

    ArticleĀ  Google ScholarĀ 

  22. Selig, B., Vermeer, K.A., Rieger, B., Hillenaar, T., Hendriks, C.L.L.: Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy. BMC Med. Imaging 15(1), 1 (2015)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgement

This work was financed by the AGH - University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection as a part of statutory project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam PiĆ³rkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this paper

Cite this paper

PiĆ³rkowski, A. (2017). Best-Fit Segmentation Created Using Flood-Based Iterative Thinning. In: Choraś, R. (eds) Image Processing and Communications Challenges 8. IP&C 2016. Advances in Intelligent Systems and Computing, vol 525. Springer, Cham. https://doi.org/10.1007/978-3-319-47274-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47274-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47273-7

  • Online ISBN: 978-3-319-47274-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics