Skip to main content

Pseudomonas

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Pseudomonas species are non-fermentative Gram-negative bacteria that are ubiquitous in diverse environments. Pseudomonas aeruginosa is an opportunistic pathogen for humans, and is a major cause of infections among hospitalized patients, especially those with impaired immune function. It is a common cause of hospital-acquired pneumonia, bloodstream, and urinary tract infections. Owing to its low outer membrane permeability, and the expression of several multidrug efflux pumps and chromosomal β-lactamase, P. aeruginosa is intrinsically resistant to many antimicrobial agents. Moreover, it has a remarkable capability to acquire additional drug resistance through several pathways, such as the horizontal transfer of resistance determinants and the acquisition of resistance mutations that alter the expression and/or function of chromosomally encoded resistance mechanisms. Multidrug-resistant P. aeruginosa in intensive care units have severely limited our therapeutic options. Thus, the increasing emergence of multidrug-resistant P. aeruginosa isolates in hospital settings should be regarded as a serious health hazard. A concerted effort is urgently needed to curtail the spread of resistance. The objective of this chapter is to review the current knowledge on P. aeruginosa with an emphasis on its antibiotic resistance mechanisms, including intrinsic, acquired, and adaptive mechanisms. Key strategies for prevention and management of P. aeruginosa resistance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palleroni NJ. Introduction to the family Pseudomonadaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG, editors. The prokaryotes. Berlin, Heidelberg: Springer; 1981. p. 655–65. doi:10.1007/978-3-662-13187-9_58.

    Chapter  Google Scholar 

  2. Ozen AI, Ussery DW. Defining the Pseudomonas genus: where do we draw the line with Azotobacter? Microb Ecol. 2012;63(2):239–48. doi:10.1007/s00248-011-9914-8.

    Article  PubMed  Google Scholar 

  3. Bhatawadekar SM. Community-acquired urinary tract infection by pseudomonas oryzihabitans. J Glob Infect. 2013;5(2):82–4. doi:10.4103/0974-777X.112274.

    Article  Google Scholar 

  4. Jog SM, Patole SK. Flavimonas oryzihabitans bacteremia in a neonate. Indian Pediatr. 2001;38(5):562–3.

    CAS  PubMed  Google Scholar 

  5. Lin RD, Hsueh PR, Chang JC, Teng LJ, Chang SC, Ho SW, Hsieh WC, Luh KT. Flavimonas oryzihabitans bacteremia: clinical features and microbiological characteristics of isolates. Clin Infect Dis. 1997;24(5):867–73.

    Article  CAS  PubMed  Google Scholar 

  6. Marin M, Garcia de Viedma D, Martin-Rabadan P, Rodriguez-Creixems M, Bouza E. Infection of hickman catheter by Pseudomonas (formerly flavimonas) oryzihabitans traced to a synthetic bath sponge. J Clin Microbiol. 2000;38(12):4577–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajmohan S, Dodd CE, Waites WM. Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. J Appl Microbiol. 2002;93(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  8. Liu L, Chen H, Brecher MB, Li Z, Wei B, Nandi B, Zhang J, Ling H, Winslow G, Braun J, Li H. Pfit is a structurally novel Crohn’s disease-associated superantigen. PLoS Pathog. 2013;9(12), e1003837. doi:10.1371/journal.ppat.1003837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Madi A, Lakhdari O, Blottiere HM, Guyard-Nicodeme M, Le Roux K, Groboillot A, Svinareff P, Dore J, Orange N, Feuilloley MG, Connil N. The clinical Pseudomonas fluorescens MFN1032 strain exerts a cytotoxic effect on epithelial intestinal cells and induces Interleukin-8 via the AP-1 signaling pathway. BMC Microbiol. 2010;10:215. doi:10.1186/1471-2180-10-215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gershman MD, Kennedy DJ, Noble-Wang J, Kim C, Gullion J, Kacica M, Jensen B, Pascoe N, Saiman L, McHale J, Wilkins M, Schoonmaker-Bopp D, Clayton J, Arduino M, Srinivasan A, Pseudomonas fluorescens Investigation T. Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infect Dis. 2008;47(11):1372–9. doi:10.1086/592968.

  11. Hsueh PR, Teng LJ, Pan HJ, Chen YC, Sun CC, Ho SW, Luh KT. Outbreak of Pseudomonas fluorescens bacteremia among oncology patients. J Clin Microbiol. 1998;36(10):2914–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang CH, Young T, Peng MY, Weng MC. Clinical spectrum of Pseudomonas putida infection. J Formosan Med Assoc. 1996;95(10):754–61.

    CAS  PubMed  Google Scholar 

  13. Yoshino Y, Kitazawa T, Kamimura M, Tatsuno K, Ota Y, Yotsuyanagi H. Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature. J Infect Chemother. 2011;17(2):278–82. doi:10.1007/s10156-010-0114-0.

    Article  PubMed  Google Scholar 

  14. Chandrasekaran S, Lalithakumari D. Plasmid-mediated rifampicin resistance in Pseudomonas fluorescens. J Med Microbiol. 1998;47(3):197–200.

    Article  CAS  PubMed  Google Scholar 

  15. Horii T, Muramatsu H, Iinuma Y. Mechanisms of resistance to fluoroquinolones and carbapenems in Pseudomonas putida. J Antimicrob Chemother. 2005;56(4):643–7. doi:10.1093/jac/dki254.

    Article  CAS  PubMed  Google Scholar 

  16. Gessard C. Classics in infectious diseases. On the blue and green coloration that appears on bandages. By Carle Gessard (1850–1925). Rev Infect Dis. 1984;6(Suppl. 3):S775–6.

    Google Scholar 

  17. Wilson R, Pitt T, Taylor G, Watson D, MacDermot J, Sykes D, Roberts D, Cole P. Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro. J Clin Invest. 1987;79(1):221–9. doi:10.1172/JCI112787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berrouane YF, McNutt LA, Buschelman BJ, Rhomberg PR, Sanford MD, Hollis RJ, Pfaller MA, Herwaldt LA. Outbreak of severe Pseudomonas aeruginosa infections caused by a contaminated drain in a whirlpool bathtub. Clin Infect Dis. 2000;31(6):1331–7. doi:10.1086/317501.

    Article  CAS  PubMed  Google Scholar 

  19. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406(6799):959–64. doi:10.1038/35023079.

    Article  CAS  PubMed  Google Scholar 

  20. Rice LB. Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis. 2006;43 Suppl 2:S100–5. doi:10.1086/504487.

    Article  CAS  PubMed  Google Scholar 

  21. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003;168(8):918–51. doi:10.1164/rccm.200304-505SO.

    Article  PubMed  Google Scholar 

  22. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67(3):351–68.

    Article  CAS  PubMed  Google Scholar 

  23. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67(3):159–73. doi:10.1111/2049-632X.12033.

    Article  CAS  PubMed  Google Scholar 

  24. Bowers DR, Liew YX, Lye DC, Kwa AL, Hsu LY, Tam VH. Outcomes of appropriate empiric combination versus monotherapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother. 2013;57(3):1270–4. doi:10.1128/AAC.02235-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao B, Wang H, Sun H, Zhu Y, Chen M. Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. J Hosp Infect. 2004;57(2):112–8. doi:10.1016/j.jhin.2004.03.021.

    Article  CAS  PubMed  Google Scholar 

  26. Strateva T, Yordanov D. Pseudomonas aeruginosa—a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(Pt 9):1133–48. doi:10.1099/jmm.0.009142-0.

    Article  CAS  PubMed  Google Scholar 

  27. Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419–26. doi:10.1016/j.tim.2011.04.005.

    Article  CAS  PubMed  Google Scholar 

  28. Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res. 2010;10(4):441–51. doi:10.1586/erp.10.49.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gharabaghi MA, Abdollahi SM, Safavi E. Abtahi SH (2012) Community acquired Pseudomonas pneumonia in an immune competent host. BMJ Case Rep. 2012. doi:10.1136/bcr.01.2012.5673.

    Google Scholar 

  30. Huhulescu S, Simon M, Lubnow M, Kaase M, Wewalka G, Pietzka AT, Stoger A, Ruppitsch W, Allerberger F. Fatal Pseudomonas aeruginosa pneumonia in a previously healthy woman was most likely associated with a contaminated hot tub. Infection. 2011;39(3):265–9. doi:10.1007/s15010-011-0096-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fujitani S, Sun HY, Yu VL, Weingarten JA. Pneumonia due to Pseudomonas aeruginosa. Part I: Epidemiology, clinical diagnosis, and source. Chest. 2011;139(4):909–19. doi:10.1378/chest.10-0166.

    Article  PubMed  Google Scholar 

  32. Zavascki AP, Barth AL, Fernandes JF, Moro AL, Goncalves AL, Goldani LZ. Reappraisal of Pseudomonas aeruginosa hospital-acquired pneumonia mortality in the era of metallo-beta-lactamase-mediated multidrug resistance: a prospective observational study. Crit Care. 2006;10(4):R114. doi:10.1186/cc5006.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bou R, Aguilar A, Perpinan J, Ramos P, Peris M, Lorente L, Zuniga A. Nosocomial outbreak of Pseudomonas aeruginosa infections related to a flexible bronchoscope. J Hosp Infect. 2006;64(2):129–35. doi:10.1016/j.jhin.2006.06.014.

    Article  CAS  PubMed  Google Scholar 

  34. Micek ST, Kollef KE, Reichley RM, Roubinian N, Kollef MH. Health care-associated pneumonia and community-acquired pneumonia: a single-center experience. Antimicrob Agents Chemother. 2007;51(10):3568–73. doi:10.1128/AAC.00851-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kollef MH, Chastre J, Fagon JY, Francois B, Niederman MS, Rello J, Torres A, Vincent JL, Wunderink RG, Go KW, Rehm C. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit Care Med. 2014;42(10):2178–87. doi:10.1097/CCM.0000000000000510.

    Article  PubMed  Google Scholar 

  36. Rello J, Allegri C, Rodriguez A, Vidaur L, Sirgo G, Gomez F, Agbaht K, Pobo A, Diaz E. Risk factors for ventilator-associated pneumonia by Pseudomonas aeruginosa in presence of recent antibiotic exposure. Anesthesiology. 2006;105(4):709–14.

    Article  PubMed  Google Scholar 

  37. Cezario RC, Duarte De Morais L, Ferreira JC, Costa-Pinto RM, da Costa Darini AL, Gontijo-Filho PP. Nosocomial outbreak by imipenem-resistant metallo-beta-lactamase-producing Pseudomonas aeruginosa in an adult intensive care unit in a Brazilian teaching hospital. Enferm Infecc Microbiol Clin. 2009;27(5):269–74. doi:10.1016/j.eimc.2008.09.009.

    Article  PubMed  Google Scholar 

  38. El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother. 2009;64(2):229–38. doi:10.1093/jac/dkp201.

    Article  PubMed  CAS  Google Scholar 

  39. Bagshaw SM, Laupland KB. Epidemiology of intensive care unit-acquired urinary tract infections. Curr Opin Infect Dis. 2006;19(1):67–71.

    Article  PubMed  Google Scholar 

  40. Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health. 2009;2(3):101–11. doi:10.1016/j.jiph.2009.08.003.

    Article  PubMed  Google Scholar 

  41. Dryden MS. Complicated skin and soft tissue infection. J Antimicrob Chemother. 2010;65(Suppl. 3):iii35–44. doi:10.1093/jac/dkq302.

  42. Ji X, Jin P, Chu Y, Feng S, Wang P. Clinical characteristics and risk factors of diabetic foot ulcer with multidrug-resistant organism infection. Int J Low Extrem Wounds. 2014;13(1):64–71. doi:10.1177/1534734614521236.

    Article  PubMed  Google Scholar 

  43. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10–52. doi:10.1093/cid/ciu296.

    Article  PubMed  Google Scholar 

  44. Kollef MH, Zilberberg MD, Shorr AF, Vo L, Schein J, Micek ST, Kim M. Epidemiology, microbiology and outcomes of healthcare-associated and community-acquired bacteremia: a multicenter cohort study. J Infect. 2011;62(2):130–5. doi:10.1016/j.jinf.2010.12.009.

    Article  PubMed  Google Scholar 

  45. Tam VH, Rogers CA, Chang KT, Weston JS, Caeiro JP, Garey KW. Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes. Antimicrob Agents Chemother. 2010;54(9):3717–22. doi:10.1128/AAC.00207-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, Kim EC, Choe KW. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003;37(6):745–51. doi:10.1086/377200.

    Article  PubMed  Google Scholar 

  47. Kim YJ, Jun YH, Kim YR, Park KG, Park YJ, Kang JY, Kim SI. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect Dis. 2014;14:161. doi:10.1186/1471-2334-14-161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Morata L, Cobos-Trigueros N, Martinez JA, Soriano A, Almela M, Marco F, Sterzik H, Nunez R, Hernandez C, Mensa J. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother. 2012;56(9):4833–7. doi:10.1128/AAC.00750-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hancock RE, Schmidt A, Bauer K, Benz R. Role of lysines in ion selectivity of bacterial outer membrane porins. Biochim Biophys Acta. 1986;860(2):263–7.

    Article  CAS  PubMed  Google Scholar 

  50. Bellido F, Martin NL, Siehnel RJ, Hancock RE. Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability. J Bacteriol. 1992;174(16):5196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bratu S, Landman D, Gupta J, Quale J. Role of AmpD, OprF and penicillin-binding proteins in beta-lactam resistance in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol. 2007;56(Pt 6):809–14. doi:10.1099/jmm.0.47019-0.

    Article  CAS  PubMed  Google Scholar 

  52. Pumbwe L, Piddock LJ. Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000;44(10):2861–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trias J, Rosenberg EY, Nikaido H. Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa. Biochim Biophys Acta. 1988;938(3):493–6.

    Article  CAS  PubMed  Google Scholar 

  54. Wylie JL, Worobec EA. The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa. J Bacteriol. 1995;177(11):3021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. MacLeod DL, Velayudhan J, Kenney TF, Therrien JH, Sutherland JL, Barker LM, Baker WR. Fosfomycin enhances the active transport of tobramycin in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56(3):1529–38. doi:10.1128/AAC.05958-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trias J, Nikaido H. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem. 1990;265(26):15680–4.

    CAS  PubMed  Google Scholar 

  57. Huang H, Hancock RE. The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa. J Bacteriol. 1996;178(11):3085–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001;47(3):247–50.

    Article  CAS  PubMed  Google Scholar 

  59. Trias J, Nikaido H. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1990;34(1):52–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kohler T, Michea-Hamzehpour M, Epp SF, Pechere JC. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother. 1999;43(2):424–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hancock RE, Brinkman FS. Function of pseudomonas porins in uptake and efflux. Annu Rev Microbiol. 2002;56:17–38. doi:10.1146/annurev.micro.56.012302.160310.

    Article  CAS  PubMed  Google Scholar 

  62. Piddock LJ. Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol. 2006;4(8):629–36. doi:10.1038/nrmicro1464.

    Article  CAS  PubMed  Google Scholar 

  63. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994;264(5157):382–8.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao Q, Li XZ, Srikumar R, Poole K. Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB. Antimicrob Agents Chemother. 1998;42(7):1682–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kohler T, Kok M, Michea-Hamzehpour M, Plesiat P, Gotoh N, Nishino T, Curty LK, Pechere JC. Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996;40(10):2288–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li XZ, Zhang L, Srikumar R, Poole K. Beta-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1998;42(2):399–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Poole K, Tetro K, Zhao Q, Neshat S, Heinrichs DE, Bianco N. Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob Agents Chemother. 1996;40(9):2021–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Srikumar R, Kon T, Gotoh N, Poole K. Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob Agents Chemother. 1998;42(1):65–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Srikumar R, Li XZ, Poole K. Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. J Bacteriol. 1997;179(24):7875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Srikumar R, Paul CJ, Poole K. Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-oprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol. 2000;182(5):1410–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Aires JR, Kohler T, Nikaido H, Plesiat P. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 1999;43(11):2624–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000;44(9):2242–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Westbrock-Wadman S, Sherman DR, Hickey MJ, Coulter SN, Zhu YQ, Warrener P, Nguyen LY, Shawar RM, Folger KR, Stover CK. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother. 1999;43(12):2975–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(2):415–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Masuda N, Gotoh N, Ishii C, Sakagawa E, Ohya S, Nishino T. Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(2):400–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakae T, Nakajima A, Ono T, Saito K, Yoneyama H. Resistance to beta-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and beta-lactamase. Antimicrob Agents Chemother. 1999;43(5):1301–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sanders CC, Sanders Jr WE. Type I beta-lactamases of gram-negative bacteria: interactions with beta-lactam antibiotics. J Infect Dis. 1986;154(5):792–800.

    Article  CAS  PubMed  Google Scholar 

  78. Livermore DM. Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992;36(9):2046–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bunny KL, Hall RM, Stokes HW. New mobile gene cassettes containing an aminoglycoside resistance gene, aacA7, and a chloramphenicol resistance gene, catB3, in an integron in pBWH301. Antimicrob Agents Chemother. 1995;39(3):686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Girlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P. Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-pectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis. 2002;34(5):603–11. doi:10.1086/338786.

    Article  CAS  PubMed  Google Scholar 

  81. Shahid M, Malik A, Sheeba. Multidrug-resistant Pseudomonas aeruginosa strains harbouring R-plasmids and AmpC beta-lactamases isolated from hospitalised burn patients in a tertiary care hospital of North India. FEMS Microbiol Lett. 2003;228(2):181–6.

    Google Scholar 

  82. Aboufaycal H, Sader HS, Rolston K, Deshpande LM, Toleman M, Bodey G, Raad I, Jones RN. blaVIM-2 and blaVIM-7 carbapenemase-producing Pseudomonas aeruginosa isolates detected in a tertiary care medical center in the United States: report from the MYSTIC program. J Clin Microbiol. 2007;45(2):614–5. doi:10.1128/JCM.01351-06.

    Article  CAS  PubMed  Google Scholar 

  83. Angelatou F, Litsas SB, Kontomichalou P. Purification and properties of two gentamicin-modifying enzymes, coded by a single plasmid pPK237 originating from Pseudomonas aeruginosa. J Antibiot. 1982;35(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  84. Poirel L, Girlich D, Naas T, Nordmann P. OXA-28, an extended-spectrum variant of OXA-10 beta-lactamase from Pseudomonas aeruginosa and its plasmid- and integron-located gene. Antimicrob Agents Chemother. 2001;45(2):447–53. doi:10.1128/AAC.45.2.447-453.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, Nordmann P. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44(4):891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, Yagi T, Kato H, Arakawa Y. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003;362(9399):1888–93. doi:10.1016/S0140-6736(03)14959-8.

    Article  CAS  PubMed  Google Scholar 

  87. Adewoye L, Sutherland A, Srikumar R, Poole K. The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol. 2002;184(15):4308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Higgins PG, Fluit AC, Milatovic D, Verhoef J, Schmitz FJ. Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2003;21(5):409–13.

    Article  CAS  PubMed  Google Scholar 

  89. Jahandideh S. Diversity in structural consequences of MexZ mutations in Pseudomonas aeruginosa. Chem Biol Drug Des. 2013;81(5):600–6. doi:10.1111/cbdd.12104.

    Article  CAS  PubMed  Google Scholar 

  90. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plesiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother. 2004;48(5):1797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hirai K, Suzue S, Irikura T, Iyobe S, Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1987;31(4):582–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jalal S, Ciofu O, Hoiby N, Gotoh N, Wretlind B. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2000;44(3):710–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kohler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol. 1997;23(2):345–54.

    Article  CAS  PubMed  Google Scholar 

  94. Masuda N, Sakagawa E, Ohya S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995;39(3):645–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fraud S, Campigotto AJ, Chen Z, Poole K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother. 2008;52(12):4478–82. doi:10.1128/AAC.01072-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fukuda H, Hosaka M, Hirai K, Iyobe S. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother. 1990;34(9):1757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Masuda N, Gotoh N, Ohya S, Nishino T. Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996;40(4):909–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mouneimne H, Robert J, Jarlier V, Cambau E. Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(1):62–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ocampo-Sosa AA, Cabot G, Rodriguez C, Roman E, Tubau F, Macia MD, Moya B, Zamorano L, Suarez C, Pena C, Dominguez MA, Moncalian G, Oliver A, Martinez-Martinez L, Spanish Network for Research in Infectious D. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother. 2012;56(4):1703–13. doi:10.1128/AAC.05451-11.

  100. Nakajima A, Sugimoto Y, Yoneyama H, Nakae T. High-level fluoroquinolone resistance in Pseudomonas aeruginosa due to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation. Microbiol Immunol. 2002;46(6):391–5.

    Article  CAS  PubMed  Google Scholar 

  101. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006;50(5):1633–41. doi:10.1128/AAC.50.5.1633-1641.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alvarez-Ortega C, Wiegand I, Olivares J, Hancock RE, Martinez JL. Genetic determinants involved in the susceptibility of Pseudomonas aeruginosa to beta-lactam antibiotics. Antimicrob Agents Chemother. 2010;54(10):4159–67. doi:10.1128/AAC.00257-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Breidenstein EB, Khaira BK, Wiegand I, Overhage J, Hancock RE. Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility. Antimicrob Agents Chemother. 2008;52(12):4486–91. doi:10.1128/AAC.00222-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dotsch A, Becker T, Pommerenke C, Magnowska Z, Jansch L, Haussler S. Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(6):2522–31. doi:10.1128/AAC.00035-09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Schurek KN, Marr AK, Taylor PK, Wiegand I, Semenec L, Khaira BK, Hancock RE. Novel genetic determinants of low-level aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52(12):4213–9. doi:10.1128/AAC.00507-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fernandez L, Breidenstein EB, Hancock RE. Creeping baselines and adaptive resistance to antibiotics. Drug Resist Updat. 2011;14(1):1–21. doi:10.1016/j.drup.2011.01.001.

    Article  CAS  PubMed  Google Scholar 

  107. El’Garch F, Jeannot K, Hocquet D, Llanes-Barakat C, Plesiat P. Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 2007;51(3):1016–21. doi:10.1128/AAC.00704-06.

    Article  PubMed  CAS  Google Scholar 

  108. Wiegand I, Marr AK, Breidenstein EB, Schurek KN, Taylor P, Hancock RE. Mutator genes giving rise to decreased antibiotic susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52(10):3810–3. doi:10.1128/AAC.00233-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Oliver A, Mena A. Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. Clin Microbiol Infect. 2010;16(7):798–808. doi:10.1111/j.1469-0691.2010.03250.x.

    Article  CAS  PubMed  Google Scholar 

  110. Oliver A, Baquero F, Blazquez J. The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol. 2002;43(6):1641–50.

    Article  CAS  PubMed  Google Scholar 

  111. Ciofu O, Riis B, Pressler T, Poulsen HE, Hoiby N. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother. 2005;49(6):2276–82. doi:10.1128/AAC.49.6.2276-2282.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ferroni A, Guillemot D, Moumile K, Bernede C, Le Bourgeois M, Waernessyckle S, Descamps P, Sermet-Gaudelus I, Lenoir G, Berche P, Taddei F. Effect of mutator P. aeruginosa on antibiotic resistance acquisition and respiratory function in cystic fibrosis. Pediatr Pulmonol. 2009;44(8):820–5. doi:10.1002/ppul.21076.

    Article  PubMed  Google Scholar 

  113. Henrichfreise B, Wiegand I, Pfister W, Wiedemann B. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother. 2007;51(11):4062–70. doi:10.1128/AAC.00148-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Macia MD, Blanquer D, Togores B, Sauleda J, Perez JL, Oliver A. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother. 2005;49(8):3382–6. doi:10.1128/AAC.49.8.3382-3386.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Oliver A, Canton R, Campo P, Baquero F, Blazquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000;288(5469):1251–4.

    Article  CAS  PubMed  Google Scholar 

  116. Oliver A. Mutators in cystic fibrosis chronic lung infection: prevalence, mechanisms, and consequences for antimicrobial therapy. Int J Med Microbiol. 2010;300(8):563–72. doi:10.1016/j.ijmm.2010.08.009.

    Article  CAS  PubMed  Google Scholar 

  117. Barber M, Waterworth PM. Activity of gentamicin against Pseudomonas and hospital Staphylococci. Br Med J. 1966;1(5481):203–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Llanes C, Pourcel C, Richardot C, Plesiat P, Fichant G, Cavallo JD, Merens A, Group GS. Diversity of beta-lactam resistance mechanisms in cystic fibrosis isolates of Pseudomonas aeruginosa: a French multicentre study. J Antimicrob Chemother. 2013;68(8):1763–71. doi:10.1093/jac/dkt115.

    Article  CAS  PubMed  Google Scholar 

  119. Hocquet D, Vogne C, El Garch F, Vejux A, Gotoh N, Lee A, Lomovskaya O, Plesiat P. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 2003;47(4):1371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mirelman D, Nuchamowitz Y. Biosynthesis of peptidoglycan in Pseudomonas aeruginosa. 2. Mode of action of beta-lactam antibiotics. Eur J Biochem/FEBS. 1979;94(2):549–56.

    Article  CAS  Google Scholar 

  121. Paul M, Yahav D, Bivas A, Fraser A, Leibovici L. Anti-pseudomonal beta-lactams for the initial, empirical, treatment of febrile neutropenia: comparison of beta-lactams. Cochrane Database Syst Rev. 2010;11, CD005197. doi:10.1002/14651858.CD005197.pub3.

    Google Scholar 

  122. Pechere JC, Kohler T. Patterns and modes of beta-lactam resistance in Pseudomonas aeruginosa. Clin Microbiol Infect. 1999;5 Suppl 1:S15–8.

    Article  CAS  PubMed  Google Scholar 

  123. Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201. doi:10.1128/CMR.00037-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321–31.

    Article  CAS  PubMed  Google Scholar 

  125. Zhao WH, Hu ZQ. Beta-lactamases identified in clinical isolates of Pseudomonas aeruginosa. Crit Rev Microbiol. 2010;36(3):245–58. doi:10.3109/1040841X.2010.481763.

    Article  CAS  PubMed  Google Scholar 

  126. Lamotte-Brasseur J, Knox J, Kelly JA, Charlier P, Fonze E, Dideberg O, Frere JM. The structures and catalytic mechanisms of active-site serine beta-lactamases. Biotechnol Genet Eng Rev. 1994;12:189–230.

    Article  CAS  PubMed  Google Scholar 

  127. Nordmann P, Guibert M. Extended-spectrum beta-lactamases in Pseudomonas aeruginosa. J Antimicrob Chemother. 1998;42(2):128–31.

    Article  CAS  PubMed  Google Scholar 

  128. Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother. 2002;50(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  129. Therrien C, Kotra LP, Sanschagrin F, Mobashery S, Levesque RC. Evaluation of inhibition of the carbenicillin-hydrolyzing beta-lactamase PSE-4 by the clinically used mechanism-based inhibitors. FEBS Lett. 2000;470(3):285–92.

    Article  CAS  PubMed  Google Scholar 

  130. Langaee TY, Gagnon L, Huletsky A. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression. Antimicrob Agents Chemother. 2000;44(3):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lodge J, Busby S, Piddock L. Investigation of the Pseudomonas aeruginosa ampR gene and its role at the chromosomal ampC beta-lactamase promoter. FEMS Microbiol Lett. 1993;111(2–3):315–20.

    CAS  PubMed  Google Scholar 

  132. Bagge N, Ciofu O, Hentzer M, Campbell JI, Givskov M, Hoiby N. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother. 2002;46(11):3406–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tam VH, Chang KT, Abdelraouf K, Brioso CG, Ameka M, McCaskey LA, Weston JS, Caeiro JP, Garey KW. Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(3):1160–4. doi:10.1128/AAC.01446-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tam VH, Schilling AN, LaRocco MT, Gentry LO, Lolans K, Quinn JP, Garey KW. Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa. Clin Microbiol Infect. 2007;13(4):413–8. doi:10.1111/j.1469-0691.2006.01674.x.

    Article  CAS  PubMed  Google Scholar 

  135. Xavier DE, Picao RC, Girardello R, Fehlberg LC, Gales AC. Efflux pumps expression and its association with porin down-regulation and beta-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol. 2010;10:217. doi:10.1186/1471-2180-10-217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Jones RN. Important and emerging beta-lactamase-mediated resistances in hospital-based pathogens: the Amp C enzymes. Diagn Microbiol Infect Dis. 1998;31(3):461–6.

    Article  CAS  PubMed  Google Scholar 

  137. Riera E, Cabot G, Mulet X, Garcia-Castillo M, del Campo R, Juan C, Canton R, Oliver A. Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother. 2011;66(9):2022–7. doi:10.1093/jac/dkr232.

    Article  CAS  PubMed  Google Scholar 

  138. Rodriguez-Martinez JM, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(5):1766–71. doi:10.1128/AAC.01410-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li H, Estabrook M, Jacoby GA, Nichols WW, Testa RT, Bush K. In vitro susceptibility of characterized beta-lactamase-producing strains tested with avibactam combinations. Antimicrob Agents Chemother. 2015;59(3):1789–93. doi:10.1128/AAC.04191-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Huovinen S, Huovinen P, Jacoby GA. Detection of plasmid-mediated beta-lactamases with DNA probes. Antimicrob Agents Chemother. 1988;32(2):175–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob Agents Chemother. 2010;54(1):24–38. doi:10.1128/AAC.01512-08.

    Article  CAS  PubMed  Google Scholar 

  142. Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2004;48(6):2043–8. doi:10.1128/AAC.48.6.2043-2048.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51, table of contents. doi: 10.1128/CMR.14.4.933-951.2001.

  144. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–86. doi:10.1128/CMR.18.4.657-686.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dubois V, Poirel L, Marie C, Arpin C, Nordmann P, Quentin C. Molecular characterization of a novel class 1 integron containing bla(GES-1) and a fused product of aac3-Ib/aac6′-Ib′ gene cassettes in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2002;46(3):638–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mavroidi A, Tzelepi E, Tsakris A, Miriagou V, Sofianou D, Tzouvelekis LS. An integron-associated beta-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum beta-lactamase IBC-1. J Antimicrob Chemother. 2001;48(5):627–30.

    Article  CAS  PubMed  Google Scholar 

  147. Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996;40(11):2488–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(5):1281–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Naas T, Poirel L, Karim A, Nordmann P. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett. 1999;176(2):411–9.

    CAS  PubMed  Google Scholar 

  150. Nordmann P, Naas T. Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrob Agents Chemother. 1994;38(1):104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Poirel L, Brinas L, Verlinde A, Ide L, Nordmann P. BEL-1, a novel clavulanic acid-inhibited extended-spectrum beta-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(9):3743–8. doi:10.1128/AAC.49.9.3743-3748.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tian GB, Adams-Haduch JM, Bogdanovich T, Wang HN, Doi Y. PME-1, an extended-spectrum beta-lactamase identified in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(6):2710–3. doi:10.1128/AAC.01660-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother. 2003;47(8):2385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hall LM, Livermore DM, Gur D, Akova M, Akalin HE. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1993;37(8):1637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fournier D, Hocquet D, Dehecq B, Cholley P, Plesiat P. Detection of a new extended-spectrum oxacillinase in Pseudomonas aeruginosa. J Antimicrob Chemother. 2010;65(2):364–5. doi:10.1093/jac/dkp438.

    Article  CAS  PubMed  Google Scholar 

  156. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–58, table of contents. doi:10.1128/CMR.00001-07.

  157. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002;8(6):321–31.

    Article  CAS  PubMed  Google Scholar 

  158. Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother. 2004;48(12):4654–61. doi:10.1128/AAC.48.12.4654-4661.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begovic J, Topisirovic L, Kojic M. Emergence of NDM-1 metallo-beta-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother. 2011;55(8):3929–31. doi:10.1128/AAC.00226-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, Rossolini GM. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43(7):1584–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Leiros HK, Borra PS, Brandsdal BO, Edvardsen KS, Spencer J, Walsh TR, Samuelsen O. Crystal structure of the mobile metallo-beta-lactamase AIM-1 from Pseudomonas aeruginosa: insights into antibiotic binding and the role of Gln157. Antimicrob Agents Chemother. 2012;56(8):4341–53. doi:10.1128/AAC.00448-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pollini S, Maradei S, Pecile P, Olivo G, Luzzaro F, Docquier JD, Rossolini GM. FIM-1, a new acquired metallo-beta-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother. 2013;57(1):410–6. doi:10.1128/AAC.01953-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Senda K, Arakawa Y, Nakashima K, Ito H, Ichiyama S, Shimokata K, Kato N, Ohta M. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob Agents Chemother. 1996;40(2):349–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, Walsh TR. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother. 2002;50(5):673–9.

    Article  CAS  PubMed  Google Scholar 

  165. Li XZ, Ma D, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance. Antimicrob Agents Chemother. 1994;38(8):1742–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sobel ML, Hocquet D, Cao L, Plesiat P, Poole K. Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(5):1782–6. doi:10.1128/AAC.49.5.1782-1786.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vettoretti L, Floret N, Hocquet D, Dehecq B, Plesiat P, Talon D, Bertrand X. Emergence of extensive-drug-resistant Pseudomonas aeruginosa in a French university hospital. Eur J Clin Microbiol Infect Dis. 2009;28(10):1217–22. doi:10.1007/s10096-009-0767-8.

    Article  CAS  PubMed  Google Scholar 

  168. Jakics EB, Iyobe S, Hirai K, Fukuda H, Hashimoto H. Occurrence of the nfxB type mutation in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992;36(11):2562–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000;44(12):3322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pena C, Suarez C, Tubau F, Juan C, Moya B, Dominguez MA, Oliver A, Pujol M, Ariza J. Nosocomial outbreak of a non-cefepime-susceptible ceftazidime-susceptible Pseudomonas aeruginosa strain overexpressing MexXY-OprM and producing an integron-borne PSE-1 betta-lactamase. J Clin Microbiol. 2009;47(8):2381–7. doi:10.1128/JCM.00094-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ochs MM, McCusker MP, Bains M, Hancock RE. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother. 1999;43(5):1085–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang J, Zhou JY, Qu TT, Shen P, Wei ZQ, Yu YS, Li LJ. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. Int J Antimicrob Agents. 2010;35(5):486–91. doi:10.1016/j.ijantimicag.2009.12.014.

    Article  PubMed  CAS  Google Scholar 

  173. Bellido F, Veuthey C, Blaser J, Bauernfeind A, Pechere JC. Novel resistance to imipenem associated with an altered PBP-4 in a Pseudomonas aeruginosa clinical isolate. J Antimicrob Chemother. 1990;25(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  174. Godfrey AJ, Bryan LE, Rabin HR. Beta-Lactam-resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrob Agents Chemother. 1981;19(5):705–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liao X, Hancock RE. Susceptibility to beta-lactam antibiotics of Pseudomonas aeruginosa overproducing penicillin-binding protein 3. Antimicrob Agents Chemother. 1997;41(5):1158–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Moya B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, Oliver A. Pan-beta-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56(9):4771–8. doi:10.1128/AAC.00680-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Giske CG, Buaro L, Sundsfjord A, Wretlind B. Alterations of porin, pumps, and penicillin-binding proteins in carbapenem resistant clinical isolates of Pseudomonas aeruginosa. Microb Drug Resist. 2008;14(1):23–30. doi:10.1089/mdr.2008.0778.

    Article  CAS  PubMed  Google Scholar 

  178. Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother. 2000;44(12):3249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(2):479–87. doi:10.1128/AAC.49.2.479-487.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151–71. doi:10.1016/j.drup.2010.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Brzezinska M, Benveniste R, Davies J, Daniels PJ, Weinstein J. Gentamicin resistance in strains of Pseudomonas aeruginosa mediated by enzymatic N-acetylation of the deoxystreptamine moiety. Biochemistry. 1972;11(5):761–5.

    Article  CAS  PubMed  Google Scholar 

  182. Sagai H, Krcmery V, Hasuda K, Iyobe S, Knothe H. R factor-mediated resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. Jpn J Microbiol. 1975;19(6):427–32.

    Article  CAS  PubMed  Google Scholar 

  183. Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T. novel 6′-n-aminoglycoside acetyltransferase AAC(6′)-Iaj from a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(1):96–100. doi:10.1128/AAC.01105-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Miller GH, Sabatelli FJ, Hare RS, Glupczynski Y, Mackey P, Shlaes D, Shimizu K, Shaw KJ, Aminoglycoside Resistance Study Groups. The most frequent aminoglycoside resistance mechanisms--changes with time and geographic area: a reflection of aminoglycoside usage patterns? Clin Infect Dis. 1997;24 Suppl 1:S46–62.

    Article  CAS  PubMed  Google Scholar 

  185. Kobayashi F, Yamaguchi M, Mitsuhashi S. Phosphorylated inactivation of aminoglycosidic antibiotics by Pseudomonas aeruginosa. Jpn J Microbiol. 1971;15(3):265–72.

    Article  CAS  PubMed  Google Scholar 

  186. Kobayashi F, Yamaguchi M, Mitsuhashi S. Activity of lividomycin against Pseudomonas aeruginosa: its inactivation by phosphorylation induced by resistant strains. Antimicrob Agents Chemother. 1972;1(1):17–21.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Bryan LE, Haraphongse R, Van den Elzen HM. Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J Antibiot. 1976;29(7):743–53.

    Article  CAS  PubMed  Google Scholar 

  188. Kono M, O'Hara K. Kanamycin-resistance mechanism of Pseudomonas aeruginosa governed by an R-plasmid independently of inactivating enzymes. J Antibiot. 1977;30(8):688–90.

    Article  CAS  PubMed  Google Scholar 

  189. Maloney J, Rimland D, Stephens DS, Terry P, Whitney AM. Analysis of amikacin-resistant Pseudomonas aeruginosa developing in patients receiving amikacin. Arch Intern Med. 1989;149(3):630–4.

    Article  CAS  PubMed  Google Scholar 

  190. Tseng JT, Bryan LE, Van den Elzen HM. Mechanisms and spectrum of streptomycin resistance in a natural population of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1972;2(3):136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sobel ML, McKay GA, Poole K. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2003;47(10):3202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Vogne C, Aires JR, Bailly C, Hocquet D, Plesiat P. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2004;48(5):1676–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Feliziani S, Lujan AM, Moyano AJ, Sola C, Bocco JL, Montanaro P, Canigia LF, Argarana CE, Smania AM. Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections. PLoS ONE 2010;5(9). doi:10.1371/journal.pone.0012669.

  194. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A. 2006;103(22):8487–92. doi:10.1073/pnas.0602138103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Guenard S, Muller C, Monlezun L, Benas P, Broutin I, Jeannot K, Plesiat P. Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(1):221–8. doi:10.1128/AAC.01252-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Jo JT, Brinkman FS, Hancock RE. Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob Agents Chemother. 2003;47(3):1101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Doi Y, de Oliveira GD, Adams J, Paterson DL. Coproduction of novel 16S rRNA methylase RmtD and metallo-beta-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother. 2007;51(3):852–6. doi:10.1128/AAC.01345-06.

    Article  CAS  PubMed  Google Scholar 

  198. Gurung M, Moon DC, Tamang MD, Kim J, Lee YC, Seol SY, Cho DT, Lee JC. Emergence of 16S rRNA methylase gene armA and cocarriage of bla(IMP-1) in Pseudomonas aeruginosa isolates from South Korea. Diagn Microbiol Infect Dis. 2010;68(4):468–70. doi:10.1016/j.diagmicrobio.2010.07.021.

    Article  CAS  PubMed  Google Scholar 

  199. Zhou Y, Yu H, Guo Q, Xu X, Ye X, Wu S, Guo Y, Wang M. Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides. Eur J Clin Microbiol Infect Dis. 2010;29(11):1349–53. doi:10.1007/s10096-010-1004-1.

    Article  CAS  PubMed  Google Scholar 

  200. Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev. 1997;61(3):377–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Hooper DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis. 2001;32 Suppl 1:S9–15. doi:10.1086/319370.

    Article  CAS  PubMed  Google Scholar 

  202. Cambau E, Perani E, Dib C, Petinon C, Trias J, Jarlier V. Role of mutations in DNA gyrase genes in ciprofloxacin resistance of Pseudomonas aeruginosa susceptible or resistant to imipenem. Antimicrob Agents Chemother. 1995;39(10):2248–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jalal S, Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist. 1998;4(4):257–61.

    Article  CAS  PubMed  Google Scholar 

  204. Lee JK, Lee YS, Park YK, Kim BS. Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2005;25(4):290–5. doi:10.1016/j.ijantimicag.2004.11.012.

    Article  CAS  PubMed  Google Scholar 

  205. Muramatsu H, Horii T, Takeshita A, Hashimoto H, Maekawa M. Characterization of fluoroquinolone and carbapenem susceptibilities in clinical isolates of levofloxacin-resistant Pseudomonas aeruginosa. Chemotherapy. 2005;51(2–3):70–5. doi:10.1159/000085612.

    Article  CAS  PubMed  Google Scholar 

  206. Adabi M, Talebi-Taher M, Arbabi L, Afshar M, Fathizadeh S, Minaeian S, Moghadam-Maragheh N, Majidpour A. Spread of efflux pump overexpressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa by using an efflux pump inhibitor. Infect Chemother. 2015;47(2):98–104. doi:10.3947/ic.2015.47.2.98.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Llanes C, Kohler T, Patry I, Dehecq B, van Delden C, Plesiat P. Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother. 2011;55(12):5676–84. doi:10.1128/AAC.00101-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011;2:65. doi:10.3389/fmicb.2011.00065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhang L, Li XZ, Poole K. Fluoroquinolone susceptibilities of efflux-mediated multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia. J Antimicrob Chemother. 2001;48(4):549–52.

    Article  CAS  PubMed  Google Scholar 

  210. Li Y, Mima T, Komori Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother. 2003;52(4):572–5. doi:10.1093/jac/dkg390.

    Article  CAS  PubMed  Google Scholar 

  211. Bruchmann S, Dotsch A, Nouri B, Chaberny IF, Haussler S. Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob Agents Chemother. 2013;57(3):1361–8. doi:10.1128/AAC.01581-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Velkov T, Thompson PE, Nation RL, Li J. Structure–activity relationships of polymyxin antibiotics. J Med Chem. 2010;53(5):1898–916. doi:10.1021/jm900999h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Boll M, Radziejewska-Lebrecht J, Warth C, Krajewska-Pietrasik D, Mayer H. 4-Amino-4-deoxy-L-arabinose in LPS of enterobacterial R-mutants and its possible role for their polymyxin reactivity. FEMS Immunol Med Microbiol. 1994;8(4):329–41.

    CAS  PubMed  Google Scholar 

  214. Moskowitz SM, Brannon MK, Dasgupta N, Pier M, Sgambati N, Miller AK, Selgrade SE, Miller SI, Denton M, Conway SP, Johansen HK, Hoiby N. PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2012;56(2):1019–30. doi:10.1128/AAC.05829-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Fernandez L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother. 2010;54(8):3372–82. doi:10.1128/AAC.00242-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol. 1998;27(6):1171–82.

    Article  CAS  PubMed  Google Scholar 

  217. Miller AK, Brannon MK, Stevens L, Johansen HK, Selgrade SE, Miller SI, Hoiby N, Moskowitz SM. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2011;55(12):5761–9. doi:10.1128/AAC.05391-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(12):5150–4. doi:10.1128/AAC.00893-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Muller C, Plesiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and beta-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(3):1211–21. doi:10.1128/AAC.01252-10.

    Article  CAS  PubMed  Google Scholar 

  220. Schurek KN, Sampaio JL, Kiffer CR, Sinto S, Mendes CM, Hancock RE. Involvement of pmrAB and phoPQ in polymyxin B adaptation and inducible resistance in non-cystic fibrosis clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(10):4345–51. doi:10.1128/AAC.01267-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Fernandez L, Jenssen H, Bains M, Wiegand I, Gooderham WJ, Hancock RE. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob Agents Chemother. 2012;56(12):6212–22. doi:10.1128/AAC.01530-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, Kaul RK, Johansen HK, Hoiby N, Moskowitz SM. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother. 2013;57(5):2204–15. doi:10.1128/AAC.02353-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 2001;33(8):1387–92. doi:10.1086/322972.

    Article  CAS  PubMed  Google Scholar 

  224. Nicolle LE. The prevention of hospital-acquired urinary tract infection. Clin Infect Dis. 2008;46(2):251–3. doi:10.1086/524663.

    Article  PubMed  Google Scholar 

  225. Smith K, Hunter IS. Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J Med Microbiol. 2008;57(Pt 8):966–73. doi:10.1099/jmm.0.47668-0.

    Article  CAS  PubMed  Google Scholar 

  226. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Mulcahy LR, Burns JL, Lory S, Lewis K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol. 2010;192(23):6191–9. doi:10.1128/JB.01651-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  229. Moreau-Marquis S, Stanton BA, O’Toole GA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther. 2008;21(4):595–9. doi:10.1016/j.pupt.2007.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hoyle BD, Alcantara J, Costerton JW. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother. 1992;36(9):2054–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Stewart PS, Roe F, Rayner J, Elkins JG, Lewandowski Z, Ochsner UA, Hassett DJ. Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2000;66(2):836–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Evans DJ, Allison DG, Brown MR, Gilbert P. Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother. 1991;27(2):177–84.

    Article  CAS  PubMed  Google Scholar 

  233. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol. 2008;68(1):223–40. doi:10.1111/j.1365-2958.2008.06152.x.

    Article  CAS  PubMed  Google Scholar 

  234. Brown MR, Barker J. Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol. 1999;7(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  235. Cochran WL, Suh SJ, McFeters GA, Stewart PS. Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine. J Appl Microbiol. 2000;88(3):546–53.

    Article  CAS  PubMed  Google Scholar 

  236. Korber DR, James GA, Costerton JW. Evaluation of fleroxacin activity against established pseudomonas fluorescens biofilms. Appl Environ Microbiol. 1994;60(5):1663–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Xu KD, McFeters GA, Stewart PS. Biofilm resistance to antimicrobial agents. Microbiology. 2000;146(Pt 3):547–9.

    Article  CAS  PubMed  Google Scholar 

  238. Cochran WL, McFeters GA, Stewart PS. Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J Appl Microbiol. 2000;88(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  239. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003;426(6964):306–10. doi:10.1038/nature02122.

    Article  CAS  PubMed  Google Scholar 

  240. Zhang L, Mah TF. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol. 2008;190(13):4447–52. doi:10.1128/JB.01655-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol. 2011;60(Pt 6):699–709. doi:10.1099/jmm.0.030932-0.

    Article  PubMed  Google Scholar 

  242. Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2000;44(3):640–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Roberts ME, Stewart PS. Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology. 2005;151(Pt 1):75–80. doi:10.1099/mic.0.27385-0.

    Article  CAS  PubMed  Google Scholar 

  244. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50(1):43–8. doi:10.1128/AAC.50.1.43-48.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Moriyama B, Henning SA, Childs R, Holland SM, Anderson VL, Morris JC, Wilson WH, Drusano GL, Walsh TJ. High-dose continuous infusion beta-lactam antibiotics for the treatment of resistant Pseudomonas aeruginosa infections in immunocompromised patients. Ann Pharmacother. 2010;44(5):929–35. doi:10.1345/aph.1M717.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 2007;60(6):1206–15. doi:10.1093/jac/dkm357.

    Article  CAS  PubMed  Google Scholar 

  247. Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol. 2006;55(Pt 12):1619–29. doi:10.1099/jmm.0.46747-0.

    Article  CAS  PubMed  Google Scholar 

  248. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81. doi:10.1111/j.1469-0691.2011.03570.x.

    Article  CAS  PubMed  Google Scholar 

  249. Cabot G, Ocampo-Sosa AA, Dominguez MA, Gago JF, Juan C, Tubau F, Rodriguez C, Moya B, Pena C, Martinez-Martinez L, Oliver A, Spanish Network for Research in Infectious D. Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother. 2012;56(12):6349–57. doi:10.1128/AAC.01388-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Vatcheva-Dobrevska R, Mulet X, Ivanov I, Zamorano L, Dobreva E, Velinov T, Kantardjiev T, Oliver A. Molecular epidemiology and multidrug resistance mechanisms of Pseudomonas aeruginosa isolates from Bulgarian hospitals. Microb Drug Resist. 2013;19(5):355–61. doi:10.1089/mdr.2013.0004.

    Article  CAS  PubMed  Google Scholar 

  251. Kriengkauykiat J, Porter E, Lomovskaya O, Wong-Beringer A. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(2):565–70. doi:10.1128/AAC.49.2.565-570.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Wolter DJ, Smith-Moland E, Goering RV, Hanson ND, Lister PD. Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. Diagn Microbiol Infect Dis. 2004;50(1):43–50. doi:10.1016/j.diagmicrobio.2004.05.004.

    Article  CAS  PubMed  Google Scholar 

  253. Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D, Bertrand X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol. 2011;49(7):2578–83. doi:10.1128/JCM.00102-11.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Liakopoulos A, Mavroidi A, Katsifas EA, Theodosiou A, Karagouni AD, Miriagou V, Petinaki E. Carbapenemase-producing Pseudomonas aeruginosa from central Greece: molecular epidemiology and genetic analysis of class I integrons. BMC Infect Dis. 2013;13:505. doi:10.1186/1471-2334-13-505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Bratu S, Quale J, Cebular S, Heddurshetti R, Landman D. Multidrug-resistant Pseudomonas aeruginosa in Brooklyn, New York: molecular epidemiology and in vitro activity of polymyxin B. Eur J Clin Microbiol Infect Dis. 2005;24(3):196–201. doi:10.1007/s10096-005-1294-x.

    Article  CAS  PubMed  Google Scholar 

  256. Defez C, Fabbro-Peray P, Bouziges N, Gouby A, Mahamat A, Daures JP, Sotto A. Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. J Hosp Infect. 2004;57(3):209–16. doi:10.1016/j.jhin.2004.03.022.

    Article  CAS  PubMed  Google Scholar 

  257. Nouer SA, Nucci M, de-Oliveira MP, Pellegrino FL, Moreira BM. Risk factors for acquisition of multidrug-resistant Pseudomonas aeruginosa producing SPM metallo-beta-lactamase. Antimicrob Agents Chemother. 2005;49(9):3663–7. doi:10.1128/AAC.49.9.3663-3667.2005

  258. Paramythiotou E, Lucet JC, Timsit JF, Vanjak D, Paugam-Burtz C, Trouillet JL, Belloc S, Kassis N, Karabinis A, Andremont A. Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin Infect Dis. 2004;38(5):670–7. doi:10.1086/381550.

    Article  PubMed  Google Scholar 

  259. Tacconelli E, Tumbarello M, Bertagnolio S, Citton R, Spanu T, Fadda G, Cauda R. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: analysis of trends in prevalence and epidemiology. Emerg Infect Dis. 2002;8(2):220–1. doi:10.3201/eid0802.010121.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Tumbarello M, Repetto E, Trecarichi EM, Bernardini C, De Pascale G, Parisini A, Rossi M, Molinari MP, Spanu T, Viscoli C, Cauda R, Bassetti M. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect. 2011;139(11):1740–9. doi:10.1017/S0950268810003055.

    Article  CAS  PubMed  Google Scholar 

  261. Ohmagari N, Hanna H, Graviss L, Hackett B, Perego C, Gonzalez V, Dvorak T, Hogan H, Hachem R, Rolston K, Raad I. Risk factors for infections with multidrug-resistant Pseudomonas aeruginosa in patients with cancer. Cancer. 2005;104(1):205–12. doi:10.1002/cncr.21115.

    Article  PubMed  Google Scholar 

  262. Yang MA, Lee J, Choi EH, Lee HJ. Pseudomonas aeruginosa bacteremia in children over ten consecutive years: analysis of clinical characteristics, risk factors of multi-drug resistance and clinical outcomes. J Korean Med Sci. 2011;26(5):612–8. doi:10.3346/jkms.2011.26.5.612.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Abdelraouf K, Kabbara S, Ledesma KR, Poole K, Tam VH. Effect of multidrug resistance-conferring mutations on the fitness and virulence of Pseudomonas aeruginosa. J Antimicrob Chemother. 2011;66(6):1311–7. doi:10.1093/jac/dkr105.

    Article  CAS  PubMed  Google Scholar 

  264. Kugelberg E, Lofmark S, Wretlind B, Andersson DI. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J Antimicrob Chemother. 2005;55(1):22–30. doi:10.1093/jac/dkh505.

    Article  CAS  PubMed  Google Scholar 

  265. Montanari S, Oliver A, Salerno P, Mena A, Bertoni G, Tummler B, Cariani L, Conese M, Doring G, Bragonzi A. Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. Microbiology. 2007;153(Pt 5):1445–54. doi:10.1099/mic.0.2006/003400-0.

    Article  CAS  PubMed  Google Scholar 

  266. Mulet X, Cabot G, Ocampo-Sosa AA, Dominguez MA, Zamorano L, Juan C, Tubau F, Rodriguez C, Moya B, Pena C, Martinez-Martinez L, Oliver A, Spanish Network for Research in Infectious D. Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother. 2013;57(11):5527–35. doi:10.1128/AAC.01481-13.

  267. Sanchez P, Linares JF, Ruiz-Diez B, Campanario E, Navas A, Baquero F, Martinez JL. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother. 2002;50(5):657–64.

    Article  CAS  PubMed  Google Scholar 

  268. Moya B, Juan C, Alberti S, Perez JL, Oliver A. Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52(10):3694–700. doi:10.1128/AAC.00172-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Perron GG, Hall AR, Buckling A. Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Am Nat. 2010;176(3):303–11. doi:10.1086/655217.

    Article  PubMed  Google Scholar 

  270. Olivares J, Alvarez-Ortega C, Martinez JL. Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(7):3904–13. doi:10.1128/AAC.00121-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Lautenbach E, Synnestvedt M, Weiner MG, Bilker WB, Vo L, Schein J, Kim M. Imipenem resistance in Pseudomonas aeruginosa: emergence, epidemiology, and impact on clinical and economic outcomes. Infect Control Hosp Epidemiol. 2010;31(1):47–53. doi:10.1086/649021.

    Article  PubMed  Google Scholar 

  272. Pena C, Suarez C, Gozalo M, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A, Calbo E, Rodriguez-Bano J, Rodriguez F, Tubau F, Martinez-Martinez L, Oliver A, Spanish Network for Research in Infectious Diseases R. Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob Agents Chemother. 2012;56(3):1265–72. doi:10.1128/AAC.05991-11.

  273. Deptula A, Gospodarek E. Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains. Arch Microbiol. 2010;192(1):79–84. doi:10.1007/s00203-009-0528-1.

    Article  CAS  PubMed  Google Scholar 

  274. Fuse K, Fujimura S, Kikuchi T, Gomi K, Iida Y, Nukiwa T, Watanabe A. Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa. J Infect Chemother. 2013;19(1):82–8. doi:10.1007/s10156-012-0457-9.

    Article  CAS  PubMed  Google Scholar 

  275. Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun. 2004;72(12):6969–77. doi:10.1128/IAI.72.12.6969-6977.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Zaborina O, Kohler JE, Wang Y, Bethel C, Shevchenko O, Wu L, Turner JR, Alverdy JC. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier. Ann Clin Microbiol Antimicrob. 2006;5:14. doi:10.1186/1476-0711-5-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Skurnik D, Roux D, Cattoir V, Danilchanka O, Lu X, Yoder-Himes DR, Han K, Guillard T, Jiang D, Gaultier C, Guerin F, Aschard H, Leclercq R, Mekalanos JJ, Lory S, Pier GB. Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing. Proc Natl Acad Sci U S A. 2013;110(51):20747–52. doi:10.1073/pnas.1221552110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother. 2004;48(12):4606–10. doi:10.1128/AAC.48.12.4606-4610.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S, Diekema DJ, Quinn JP, Doern GV. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J Clin Microbiol. 2007;45(10):3352–9. doi:10.1128/JCM.01284-07.

    Article  PubMed  PubMed Central  Google Scholar 

  280. ECDC. Antimicrobial resistance surveillance in Europe 2011. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: European Centre for Disease Prevention and Control; 2012. doi:10.2900/6551.

  281. Zhanel GG, DeCorby M, Adam H, Mulvey MR, McCracken M, Lagace-Wiens P, Nichol KA, Wierzbowski A, Baudry PJ, Tailor F, Karlowsky JA, Walkty A, Schweizer F, Johnson J, Canadian Antimicrobial Resistance A, Hoban DJ. Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: results of the Canadian Ward Surveillance Study (CANWARD 2008). Antimicrob Agents Chemother. 2010;54(11):4684–93. doi:10.1128/AAC.00469-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Slekovec C, Robert J, Trystram D, Delarbre JM, Merens A, van der Mee-Marquet N, de Gialluly C, Costa Y, Caillon J, Hocquet D, Bertrand X, on behalf of the O. Pseudomonas aeruginosa in French hospitals between 2001 and 2011: back to susceptibility. Eur J Clin Microbiol Infect Dis. 2014;33(10):1713–7. doi:10.1007/s10096-014-2125-8.

    Article  CAS  PubMed  Google Scholar 

  283. Harris A, Torres-Viera C, Venkataraman L, DeGirolami P, Samore M, Carmeli Y. Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa. Clin Infect Dis. 1999;28(5):1128–33. doi:10.1086/514760.

    Article  CAS  PubMed  Google Scholar 

  284. Morales E, Cots F, Sala M, Comas M, Belvis F, Riu M, Salvado M, Grau S, Horcajada JP, Montero MM, Castells X. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv Res. 2012;12:122. doi:10.1186/1472-6963-12-122.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Lodise TP, Miller CD, Graves J, Furuno JP, McGregor JC, Lomaestro B, Graffunder E, McNutt LA. Clinical prediction tool to identify patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk for multidrug resistance. Antimicrob Agents Chemother. 2007;51(2):417–22. doi:10.1128/AAC.00851-06.

    Article  CAS  PubMed  Google Scholar 

  286. Aliaga L, Mediavilla JD, Cobo F. A clinical index predicting mortality with Pseudomonas aeruginosa bacteraemia. J Med Microbiol. 2002;51(7):615–9. doi:10.1099/0022-1317-51-7-615.

    Article  PubMed  Google Scholar 

  287. Hirsch EB, Cottreau JM, Chang KT, Caeiro JP, Johnson ML, Tam VH. A model to predict mortality following Pseudomonas aeruginosa bacteremia. Diagn Microbiol Infect Dis. 2012;72(1):97–102. doi:10.1016/j.diagmicrobio.2011.09.018.

    Article  PubMed  Google Scholar 

  288. Deschaght P, Van Daele S, De Baets F, Vaneechoutte M. PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients. A literature review. J Cystic Fibrosis. 2011;10(5):293–7. doi:10.1016/j.jcf.2011.05.004.

    Article  CAS  Google Scholar 

  289. Vlek AL, Bonten MJ, Boel CH. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS ONE. 2012;7(3), e32589. doi:10.1371/journal.pone.0032589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Peleg AY, Tilahun Y, Fiandaca MJ, D’Agata EM, Venkataraman L, Moellering Jr RC, Eliopoulos GM. Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa. J Clin Microbiol. 2009;47(3):830–2. doi:10.1128/JCM.01724-08.

    Article  CAS  PubMed  Google Scholar 

  291. Harris AD, McGregor JC, Furuno JP. What infection control interventions should be undertaken to control multidrug-resistant gram-negative bacteria? Clin Infect Dis. 2006;43 Suppl 2:S57–61. doi:10.1086/504479.

    Article  PubMed  Google Scholar 

  292. Regal RE, DePestel DD, VandenBussche HL. The effect of an antimicrobial restriction program on Pseudomonas aeruginosa resistance to beta-lactams in a large teaching hospital. Pharmacotherapy. 2003;23(5):618–24.

    Article  CAS  PubMed  Google Scholar 

  293. Goldstein EJ, Citron DM, Peraino V, Elgourt T, Meibohm AR, Lu S. Introduction of ertapenem into a hospital formulary: effect on antimicrobial usage and improved in vitro susceptibility of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(12):5122–6. doi:10.1128/AAC.00064-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Fridkin S, Baggs J, Fagan R, Magill S, Pollack LA, Malpiedi P, Slayton R, Khader K, Rubin MA, Jones M, Samore MH, Dumyati G, Dodds-Ashley E, Meek J, Yousey-Hindes K, Jernigan J, Shehab N, Herrera R, McDonald CL, Schneider A, Srinivasan A, Centers for Disease C, Prevention. Vital signs: improving antibiotic use among hospitalized patients. MMWR Morb Mortal Wkly Rep. 2014;63(9):194–200.

    Google Scholar 

  295. Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect. 2005;11 Suppl 4:17–32. doi:10.1111/j.1469-0691.2005.01161.x.

    Article  CAS  PubMed  Google Scholar 

  296. Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med. 1989;87(5):540–6.

    Article  CAS  PubMed  Google Scholar 

  297. Kumar A, Zarychanski R, Light B, Parrillo J, Maki D, Simon D, Laporta D, Lapinsky S, Ellis P, Mirzanejad Y, Martinka G, Keenan S, Wood G, Arabi Y, Feinstein D, Kumar A, Dodek P, Kravetsky L, Doucette S, Cooperative Antimicrobial Therapy of Septic Shock Database Research G. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med. 2010;38(9):1773–85. doi:10.1097/CCM.0b013e3181eb3ccd.

    Article  CAS  PubMed  Google Scholar 

  298. Park SY, Park HJ, Moon SM, Park KH, Chong YP, Kim MN, Kim SH, Lee SO, Kim YS, Woo JH, Choi SH. Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosa pneumonia. BMC Infect Dis. 2012;12:308. doi:10.1186/1471-2334-12-308.

    Article  PubMed  PubMed Central  Google Scholar 

  299. Pena C, Suarez C, Ocampo-Sosa A, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A, Calbo E, Rodriguez-Bano J, Rodriguez F, Tubau F, Oliver A, Martinez-Martinez L, Spanish Network for Research in Infectious D. Effect of adequate single-drug vs combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections: a post Hoc analysis of a prospective cohort. Clin Infect Dis. 2013;57(2):208–16. doi:10.1093/cid/cit223.

  300. Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev. 2014;1, CD003344. doi:10.1002/14651858.CD003344.pub3.

    Google Scholar 

  301. Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME. Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis. 2005;41(2):149–58. doi:10.1086/430912.

    Article  CAS  PubMed  Google Scholar 

  302. Bilton D, Henig N, Morrissey B, Gotfried M. Addition of inhaled tobramycin to ciprofloxacin for acute exacerbations of Pseudomonas aeruginosa infection in adult bronchiectasis. Chest. 2006;130(5):1503–10. doi:10.1378/chest.130.5.1503.

    Article  PubMed  Google Scholar 

  303. Dhand R. The role of aerosolized antimicrobials in the treatment of ventilator-associated pneumonia. Respir Care. 2007;52(7):866–84.

    PubMed  Google Scholar 

  304. Lipsky BA, Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis. 2009;49(10):1541–9. doi:10.1086/644732.

    Article  PubMed  Google Scholar 

  305. Pathengay A, Mathai A, Shah GY, Ambatipudi S. Intravitreal piperacillin/tazobactam in the management of multidrug-resistant Pseudomonas aeruginosa endophthalmitis. J Cataract Refract Surg. 2010;36(12):2210–1. doi:10.1016/j.jcrs.2010.09.013.

    Article  PubMed  Google Scholar 

  306. Baiocchi M, Catena V, Zago S, Badolati L, Baccarin M. Intrathecal colistin for treatment of multidrug resistant (MDR) Pseudomonas aeruginosa after neurosurgical ventriculitis. Infez Med. 2010;18(3):182–6.

    PubMed  Google Scholar 

  307. Gump WC, Walsh JW. Intrathecal colistin for treatment of highly resistant Pseudomonas ventriculitis. Case report and review of the literature. J Neurosurg. 2005;102(5):915–7. doi:10.3171/jns.2005.102.5.0915.

    Article  PubMed  Google Scholar 

  308. Quinn AL, Parada JP, Belmares J, O’Keefe JP. Intrathecal colistin and sterilization of resistant Pseudomonas aeruginosa shunt infection. Ann Pharmacother. 2005;39(5):949–52. doi:10.1345/aph.1E485.

    Article  PubMed  Google Scholar 

  309. Boucher HW, Talbot GH, Benjamin Jr DK, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, Infectious Diseases Society of A. 10 x '20 Progress--development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(12):1685–94. doi:10.1093/cid/cit152.

    Article  PubMed  PubMed Central  Google Scholar 

  310. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network T, Participating NF. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34 (1):1–14. doi:10.1086/668770.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent H. Tam Pharm.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdelraouf, K., Tam, V.H. (2017). Pseudomonas. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_9

Download citation

Publish with us

Policies and ethics