Skip to main content

Mechanisms of Resistance in Haemophilus influenzae and Moraxella catarrhalis

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Haemophilus influenzae and Moraxella catarrhalis are found as both respiratory tract commensals and respiratory and invasive pathogens. While it is ideal to tailor chemotherapy to a known pathogen with a known drug susceptibility profile, it is often difficult or impractical to isolate the causative agent, and many infections are treated empirically. It is therefore important to know the activity of antimicrobial agents against the pathogens associated with diseases being treated empirically and the effect of resistance mechanisms on in vivo activity. Antimicrobial agents should be used rationally, avoiding overuse, tailoring treatment to identified pathogens as much as possible, and basing empiric treatment on the disease being treated and the susceptibility of the predominant pathogens at breakpoints based on pharmacokinetic (PK) and pharmacodynamic (PD) parameters. The current status of resistance mechanisms found in Haemophilus influenzae and Moraxella catarrhalis against the antimicrobial agents recommended for empiric and directed treatment of the diseases caused by these pathogens forms the basis of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett JG, Dowell SF, Mandell LA, File TM, Musher DM, Fine MJ, Infectious Diseases Society of America. Practice guidelines for the management of community-acquired pneumonia in adults. Clin Infect Dis. 2000;31:347–82.

    Article  CAS  PubMed  Google Scholar 

  2. Jacobs MR. Anti-infective pharmacodynamics—maximizing efficacy, minimizing toxicity. Drug Discov Today. 2004;1:505–12.

    CAS  Google Scholar 

  3. Coles CL, Kanungo R, Rahmathullah L, Thulasiraj RD, Katz J, Santosham M, Tielsch JM. Pneumococcal nasopharyngeal colonization in young South Indian infants. Pediatr Infect Dis J. 2001;20:289–95.

    Article  CAS  PubMed  Google Scholar 

  4. Sethi S, Evans N, Grant BJ, Murphy TF. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 2002;347:465–71.

    Article  PubMed  Google Scholar 

  5. Garcia-Cobos S, Moscoso M, Pumarola F, Arroyo M, Lara N, Perez-Vazquez M, Aracil B, Oteo J, Garcia E, Campos J. Frequent carriage of resistance mechanisms to beta-lactams and biofilm formation in Haemophilus influenzae causing treatment failure and recurrent otitis media in young children. J Antimicrob Chemother. 2014;69:2394–9.

    Article  CAS  PubMed  Google Scholar 

  6. Hasegawa K, Kobayashi R, Takada E, Ono A, Chiba N, Morozumi M, Iwata S, Sunakawa K, Ubukata K. High prevalence of type b {beta}-lactamase-non-producing ampicillin-resistant Haemophilus influenzae in meningitis: the situation in Japan where Hib vaccine has not been introduced. J Antimicrob Chemother. 2006;57:1077–82.

    Article  CAS  PubMed  Google Scholar 

  7. Shinjoh M, Iwata S, Yagihashi T, Sato Y, Akita H, Takahashi T, Sunakawa K. Recent trends in pediatric bacterial meningitis in Japan—a country where Haemophilus influenzae type b and Streptococcus pneumoniae conjugated vaccines have just been introduced. J Infect Chemother. 2014;20:477–83.

    Article  PubMed  Google Scholar 

  8. World Health Organization 2014. Global immunization coverage in 2013. http://www.who.int/immunization/monitoring_surveillance/global_immunization_data.pdf.

  9. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, Whitley RJ. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39:1267–84.

    Article  PubMed  Google Scholar 

  10. Juven T, Mertsola J, Waris M, Leinonen M, Meurman O, Roivainen M, Eskola J, Saikku P, Ruuskanen O. Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J. 2000;19:293–8.

    Article  CAS  PubMed  Google Scholar 

  11. McCracken Jr GH. Etiology and treatment of pneumonia. Pediatr Infect Dis J. 2000;19:373–7.

    Article  PubMed  Google Scholar 

  12. Heiskanen-Kosma T, Korppi M, Jokinen C, Kurki S, Heiskanen L, Juvonen H, Kallinen S, Sten M, Tarkiainen A, Ronnberg PR, Kleemola M, Makela PH, Leinonen M. Etiology of childhood pneumonia: serologic results of a prospective, population-based study. Pediatr Infect Dis J. 1998;17:986–91.

    Article  CAS  PubMed  Google Scholar 

  13. McIntosh K. Community-acquired pneumonia in children. N Engl J Med. 2002;346:429–37.

    Article  PubMed  Google Scholar 

  14. Bradley JS, Byington CL, Shah SS, Alverson B, Carter ER, Harrison C, Kaplan SL, Mace SE, McCracken GH, Moore MR, St Peter SD, Stockwell JA, Swanson JT. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis. 2011;53:e25–76.

    Article  PubMed  Google Scholar 

  15. Block S, Hedrick J, Hammerschlag MR, Cassell GH, Craft JC. Mycoplasma pneumoniae and Chlamydia pneumoniae in pediatric community-acquired pneumonia: comparative efficacy and safety of clarithromycin vs. erythromycin ethylsuccinate. Pediatr Infect Dis J. 1995;14:471–7.

    Article  CAS  PubMed  Google Scholar 

  16. Bradley JS. Management of community-acquired pediatric pneumonia in an era of increasing antibiotic resistance and conjugate vaccines. Pediatr Infect Dis J. 2002;21:592–8, discussion 613-4.

    Article  PubMed  Google Scholar 

  17. McMillan JA. Chlamydia pneumoniae revisited. Pediatr Infect Dis J. 1998;17:1046–7.

    Article  CAS  PubMed  Google Scholar 

  18. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM, Musher DM, Niederman MS, Torres A, Whitney CG. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44 Suppl 2:S27–72.

    Article  CAS  PubMed  Google Scholar 

  19. Stevens DL. The role of vancomycin in the treatment paradigm. Clin Infect Dis. 2006;42 Suppl 1:S51–7.

    Article  CAS  PubMed  Google Scholar 

  20. Liapikou A, Torres A. Current treatment of community-acquired pneumonia. Expert Opin Pharmacother. 2013;14:1319–32.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobs MR, Felmingham D, Appelbaum PC, Gruneberg RN. The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J Antimicrob Chemother. 2003;52:229–46.

    Article  CAS  PubMed  Google Scholar 

  22. Anon JB, Jacobs MR, Poole MD, AMBROSE PG, Benninger MS, Hadley JA, Craig WA. Antimicrobial treatment guidelines for acute bacterial rhinosinusitis. Otolaryngol Head Neck Surg. 2004;130:1–45.

    Article  PubMed  Google Scholar 

  23. European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2015. MIC- and Inhibition zone diameter distributions of microorganisms without and with resistance mechanisms. Accessed 28 Feb., 2015. http://mic.eucast.org/Eucast2/.

  24. Hasegawa K, Chiba N, Kobayashi R, Murayama SY, Iwata S, Sunakawa K, Ubukata K. Rapidly increasing prevalence of beta-lactamase-nonproducing, ampicillin-resistant Haemophilus influenzae type b in patients with meningitis. Antimicrob Agents Chemother. 2004;48:1509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hasegawa K, Yamamoto K, Chiba N, Kobayashi R, Nagai K, Jacobs MR, Appelbaum PC, Sunakawa K, Ubukata K. Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microb Drug Resist. 2003;9:39–46.

    Article  CAS  PubMed  Google Scholar 

  26. Jacobs MR, Bajaksouzian S, Windau A, Good CE, Lin G, Pankuch GA, Appelbaum PC. Susceptibility of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis to 17 oral antimicrobial agents based on pharmacodynamic parameters: 1998–2001 US Surveillance Study. Clin Lab Med. 2004;24:503–30.

    Article  PubMed  Google Scholar 

  27. Koeth LM, Jacobs MR, Good CE, Bajaksouzian S, Windau A, Jakielaszek C, Saunders KA. Comparative in vitro activity of a pharmacokinetically enhanced oral formulation of amoxicillin/clavulanic acid (2000/125 mg twice daily) against 9172 respiratory isolates collected worldwide in 2000. Int J Infect Dis. 2004;8:362–73.

    Article  CAS  PubMed  Google Scholar 

  28. Ubukata K, Shibasaki Y, Yamamoto K, Chiba N, Hasegawa K, Takeuchi Y, Sunakawa K, Inoue M, Konno M. Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother. 2001;45:1693–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Daly KA. Epidemiology of otitis media. Otolaryngol Clin North Am. 1991;24:775–86.

    CAS  PubMed  Google Scholar 

  30. Dagan R, Leibovitz E. Bacterial eradication in the treatment of otitis media. Lancet Infect Dis. 2002;2:593–604.

    Article  PubMed  Google Scholar 

  31. Dowell SF, Butler JC, Giebink GS, Jacobs MR, Jernigan D, Musher DM, Rakowsky A, Schwartz B. Acute otitis media: management and surveillance in an era of pneumococcal resistance—a report from the Drug-resistant Streptococcus pneumoniae Therapeutic Working Group. Pediatr Infect Dis J. 1999;18:1–9.

    Article  CAS  PubMed  Google Scholar 

  32. Casey JR, Pichichero ME. Changes in frequency and pathogens causing acute otitis media in 1995–2003. Pediatr Infect Dis J. 2004;23:824–8.

    Article  PubMed  Google Scholar 

  33. Pelton SI, Huot H, Finkelstein JA, Bishop CJ, Hsu KK, Kellenberg J, Huang SS, Goldstein R, Hanage WP. Emergence of 19A as virulent and multidrug resistant Pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatr Infect Dis J. 2007;26:468–72.

    Article  PubMed  Google Scholar 

  34. Pichichero ME, Casey JR. Emergence of a multiresistant serotype 19A pneumococcal strain not included in the 7-valent conjugate vaccine as an otopathogen in children. J Am Med Assoc. 2007;298:1772–8.

    Article  CAS  Google Scholar 

  35. Lieberthal AS, Carroll AE, Chonmaitree T, Ganiats TG, Hoberman A, Jackson MA, Joffe MD, Miller DT, Rosenfeld RM, Sevilla XD, Schwartz RH, Thomas PA, Tunkel DE. The diagnosis and management of acute otitis media. Pediatrics. 2013;131:e964–99.

    Article  PubMed  Google Scholar 

  36. Chow AW, Benninger MS, Brook I, Brozek JL, Goldstein EJ, Hicks LA, Pankey GA, Seleznick M, Volturo G, Wald ER, File TM. IDSA clinical practice guideline for acute bacterial rhinosinusitis in children and adults. Clin Infect Dis. 2012;54:e72–112.

    Article  PubMed  Google Scholar 

  37. Sethi S. Infectious exacerbations of chronic bronchitis: diagnosis and management. J Antimicrob Chemother. 1999;43(Suppl A):97–105.

    Article  CAS  PubMed  Google Scholar 

  38. Balter MS, La Forge J, Low DE, Mandell L, Grossman RF. Canadian guidelines for the management of acute exacerbations of chronic bronchitis. Can Respir J. 2003;10(Suppl B):3B–32B.

    Article  PubMed  Google Scholar 

  39. Sethi S, Murphy TF. Acute exacerbations of chronic bronchitis: new developments concerning microbiology and pathophysiology—impact on approaches to risk stratification and therapy. Infect Dis Clin North Am. 2004;18(861–882):ix.

    Google Scholar 

  40. Albertson TE, Louie S, Chan AL. The diagnosis and treatment of elderly patients with acute exacerbation of chronic obstructive pulmonary disease and chronic bronchitis. J Am Geriatr Soc. 2010;58:570–9.

    Article  PubMed  Google Scholar 

  41. Turnidge J, Kahlmeter G, Kronvall G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect. 2006;12:418–25.

    Article  CAS  PubMed  Google Scholar 

  42. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement. M100-S25. Wayne, PA: CLSI; 2015.

    Google Scholar 

  43. Andes D, Anon J, Jacobs MR, Craig WA. Application of pharmacokinetics and pharmacodynamics to antimicrobial therapy of respiratory tract infections. Clin Lab Med. 2004;24:477–502.

    Article  PubMed  Google Scholar 

  44. Chambers HF. Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. J Infect Dis. 1999;179 Suppl 2:S353–9.

    Article  CAS  PubMed  Google Scholar 

  45. Massova I, Mobashery S. Structural and mechanistic aspects of evolution of beta-lactamases and penicillin-binding proteins. Curr Pharm Des. 1999;5:929–37.

    CAS  PubMed  Google Scholar 

  46. Ghuysen JM. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol. 1994;2:372–80.

    Article  CAS  PubMed  Google Scholar 

  47. Blumberg PM, Strominger JL. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 1974;38:291–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hotomi M, Sakai KF, Billal DS, Shimada J, Suzumoto M, Yamanaka N. Antimicrobial resistance in Haemophilus influenzae isolated from the nasopharynx among Japanese children with acute otitis media. Acta Otolaryngol. 2006;126:130–7.

    Article  CAS  PubMed  Google Scholar 

  49. Jacobs MR. Worldwide trends in antimicrobial resistance among common respiratory tract pathogens in children. Pediatr Infect Dis J. 2003;22:S109–19.

    Article  PubMed  Google Scholar 

  50. Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother. 1998;42:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jordens JZ, Slack MP. Haemophilus influenzae: then and now. Eur J Clin Microbiol Infect Dis. 1995;14:935–48.

    Article  CAS  PubMed  Google Scholar 

  52. Rubin LG, Medeiros AA, Yolken RH, Moxon ER. Ampicillin treatment failure of apparently beta-lactamase-negative Haemophilus influenzae type b meningitis due to novel beta-lactamase. Lancet. 1981;2:1008–10.

    Article  CAS  PubMed  Google Scholar 

  53. Wallace Jr RJ, Steingrube VA, Nash DR, Hollis DG, Flanagan C, Brown BA, Labidi A. BRO beta-lactamases of Branhamella catarrhalis and Moraxella subgenus Moraxella, including evidence for chromosomal beta-lactamase transfer by conjugation in B. catarrhalis, M. nonliquefaciens, and M. lacunata. Antimicrob Agents Chemother. 1989;33:1845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bush K. Beta-lactamase inhibitors from laboratory to clinic. Clin Microbiol Rev. 1988;1:109–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bozdogan B, Tristram S, Appelbaum PC. Combination of altered PBPs and expression of cloned extended-spectrum beta-lactamases confers cefotaxime resistance in Haemophilus influenzae. J Antimicrob Chemother. 2006;57:747–9.

    Article  CAS  PubMed  Google Scholar 

  56. Pitout M, Macdonald K, Musgrave H, Lindique C, Forward K, Hiltz M, Davidson R. Characterization of extended spectrum beta-lactamase (ESBL) activity in Haemophilus influenzae. In: Program and abstracts of the 42nd interscience conference on antimicrobials and chemotherapy, San Diego, CA. Abstract C2-645. Washington, DC: American Society for Microbiology; 2002. p. 96.

    Google Scholar 

  57. Tristram S, Jacobs MR, Appelbaum PC. Antimicrobial resistance in Haemophilus influenzae. Clin Microbiol Rev. 2007;20:368–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dabernat H, Delmas C, Seguy M, Pelissier R, Faucon G, Bennamani S, Pasquier C. Diversity of beta-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae. Antimicrob Agents Chemother. 2002;46:2208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sanbongi Y, Suzuki T, Osaki Y, Senju N, Ida T, Ubukata K. Molecular evolution of beta-lactam-resistant Haemophilus influenzae: 9-year surveillance of penicillin-binding protein 3 mutations in isolates from Japan. Antimicrob Agents Chemother. 2006;50:2487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takahata S, Ida T, Senju N, Sanbongi Y, Miyata A, Maebashi K, Hoshiko S. Horizontal gene transfer of ftsI, encoding penicillin-binding protein 3, in Haemophilus influenzae. Antimicrob Agents Chemother. 2007;51:1589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dabernat H, Seguy M, Faucon G, Delmas C. Epidemiology of Haemophilus influenzae strains identified in 2001 in France, and assessment of their susceptibility to beta-lactams. Med Mal Infect. 2004;34:97–101.

    Article  CAS  PubMed  Google Scholar 

  62. Fluit AC, Florijn A, Verhoef J, Milatovic D. Susceptibility of European beta-lactamase-positive and -negative Haemophilus influenzae isolates from the periods 1997/1998 and 2002/2003. J Antimicrob Chemother. 2005;56:133–8.

    Article  CAS  PubMed  Google Scholar 

  63. Tomic V, Dowzicky MJ. Regional and global antimicrobial susceptibility among isolates of Streptococcus pneumoniae and Haemophilus influenzae collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) from 2009 to 2012 and comparison with previous years of T.E.S.T. (2004–2008). Ann Clin Microbiol Antimicrob. 2014;13:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Garcia-Cobos S, Arroyo M, Perez-Vazquez M, Aracil B, Lara N, Oteo J, Cercenado E, Campos J. Isolates of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae causing invasive infections in Spain remain susceptible to cefotaxime and imipenem. J Antimicrob Chemother. 2014;69:111–6.

    Article  CAS  PubMed  Google Scholar 

  65. Garcia-Cobos S, Campos J, Lazaro E, Roman F, Cercenado E, Garcia-Rey C, Perez-Vazquez M, Oteo J, De Abajo F. Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother. 2007;51:2564–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim IS, Ki CS, Kim S, Oh WS, Peck KR, Song JH, Lee K, Lee NY. Diversity of ampicillin resistance genes and antimicrobial susceptibility patterns in Haemophilus influenzae strains isolated in Korea. Antimicrob Agents Chemother. 2007;51:453–60.

    Article  CAS  PubMed  Google Scholar 

  67. Ng WL, Kazmierczak KM, Robertson GT, Gilmour R, Winkler ME. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J Bacteriol. 2003;185:359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vazquez D, Monro RE. Effects of some inhibitors of protein synthesis on the binding of aminoacyl tRNA to ribosomal subunits. Biochim Biophys Acta. 1967;142:155–73.

    Article  CAS  PubMed  Google Scholar 

  69. Tait-Kamradt A, Davies T, Appelbaum PC, Depardieu F, Courvalin P, Petitpas J, Wondrack L, Walker A, Jacobs MR, Sutcliffe J. Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother. 2000;44:3395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tait-Kamradt A, Davies T, Cronan M, Jacobs MR, Appelbaum PC, Sutcliffe J. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob Agents Chemother. 2000;44:2118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bogdanovich T, Bozdogan B, Appelbaum PC. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother. 2006;50:893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sanchez L, Leranoz S, Puig M, Loren JG, Nikaido H, Vinas M. Molecular basis of antimicrobial resistance in non-typable Haemophilus influenzae. Microbiologia. 1997;13:309–14.

    CAS  PubMed  Google Scholar 

  73. Sanchez L, Pan W, Vinas M, Nikaido H. The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol. 1997;179:6855–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peric M, Bozdogan B, Jacobs MR, Appelbaum PC. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother. 2003;47:1017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chopra I, Hawkey PM, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother. 1992;29:245–77.

    Article  CAS  PubMed  Google Scholar 

  76. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marshall B, Roberts M, Smith A, Levy SB. Homogeneity of transferable tetracycline-resistance determinants in Haemophilus species. J Infect Dis. 1984;149:1028–9.

    Article  CAS  PubMed  Google Scholar 

  78. Campos J, Chanyangam M, Degroot R, Smith AL, Tenover FC, Reig R. Genetic relatedness of antibiotic resistance determinants in multiply resistant Hemophilus influenzae. J Infect Dis. 1989;160:810–7.

    Article  CAS  PubMed  Google Scholar 

  79. Levy J, Verhaegen G, de Mol P, Couturier M, Dekegel D, Butzler JP. Molecular characterization of resistance plasmids in epidemiologically unrelated strains of multiresistant Haemophilus influenzae. J Infect Dis. 1993;168:177–87.

    Article  CAS  PubMed  Google Scholar 

  80. Pan XS, Fisher LM. DNA gyrase and topoisomerase IV are dual targets of clinafloxacin action in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1998;42:2810–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang JC. DNA topoisomerases. Annu Rev Biochem. 1985;54:665–97.

    Article  CAS  PubMed  Google Scholar 

  82. Yokota SI, Ohkoshi Y, Sato K, Fujii N. Emergence of fluoroquinolone-resistant Haemophilus influenzae strains among elderly patients but not in children. J Clin Microbiol. 2008;46:361–5.

    Article  CAS  PubMed  Google Scholar 

  83. Davies TA, Kelly LM, Hoellman DB, Ednie LM, Clark CL, Bajaksouzian S, Jacobs MR, Appelbaum PC. Activities and postantibiotic effects of gemifloxacin compared to those of 11 other agents against Haemophilus influenzae and Moraxella catarrhalis. Antimicrob Agents Chemother. 2000;44:633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Davies TA, Kelly LM, Pankuch GA, Credito KL, Jacobs MR, Appelbaum PC. Antipneumococcal activities of gemifloxacin compared to those of nine other agents. Antimicrob Agents Chemother. 2000;44:304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Perez-Vazquez M, Roman F, Garcia-Cobos S, Campos J. Fluoroquinolone resistance in Haemophilus influenzae is associated with hypermutability. Antimicrob Agents Chemother. 2007;51:1566–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Burns JL, Mendelman PM, Levy J, Stull TL, Smith AL. A permeability barrier as a mechanism of chloramphenicol resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1985;27:46–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roberts MC, Swenson CD, Owens LM, Smith AL. Characterization of chloramphenicol-resistant Haemophilus influenzae. Antimicrob Agents Chemother. 1980;18:610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Powell M, Livermore DM. Mechanisms of chloramphenicol resistance in Haemophilus influenzae in the United Kingdom. J Med Microbiol. 1988;27:89–93.

    Article  CAS  PubMed  Google Scholar 

  89. Burchall JJ, Hitchings GH. Inhibitor binding analysis of dihydrofolate reductases from various species. Mol Pharmacol. 1965;1:126–36.

    CAS  PubMed  Google Scholar 

  90. Hartman PG. Molecular aspects and mechanism of action of dihydrofolate reductase inhibitors. J Chemother. 1993;5:369–76.

    CAS  PubMed  Google Scholar 

  91. Then R, Angehrn P. Nature of the bacterial action of sulfonamides and trimethoprim, alone and in combination. J Infect Dis. 1973;128 Suppl 3:498–501.

    Article  Google Scholar 

  92. Adrian PV, Klugman KP. Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41:2406–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Maskell JP, Sefton AM, Hall LM. Multiple mutations modulate the function of dihydrofolate reductase in trimethoprim-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother. 2001;45:1104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pikis A, Donkersloot JA, Rodriguez WJ, Keith JM. A conservative amino acid mutation in the chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus pneumoniae. J Infect Dis. 1998;178:700–6.

    Article  CAS  PubMed  Google Scholar 

  95. De Groot R, Chaffin DO, Kuehn M, Smith AL. Trimethoprim resistance in Haemophilus influenzae is due to altered dihydrofolate reductase(s). Biochem J. 1991;274(Pt 3):657–62.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Burman LG. The antimicrobial activities of trimethoprim and sulfonamides. Scand J Infect Dis. 1986;18:3–13.

    Article  CAS  PubMed  Google Scholar 

  97. Eliopoulos GM, Wennersten CB. In vitro activity of trimethoprim alone compared with trimethoprim-sulfamethoxazole and other antimicrobials against bacterial species associated with upper respiratory tract infections. Diagn Microbiol Infect Dis. 1997;29:33–8.

    Article  CAS  PubMed  Google Scholar 

  98. Then RL. Neisseriaceae, a group of bacteria with dihydrofolate reductases, moderately susceptible to trimethoprim. Zentralbl Bakteriol [Orig A]. 1979;245:450–8.

    CAS  Google Scholar 

  99. Wallace Jr RJ, Nash DR, Steingrube VA. Antibiotic susceptibilities and drug resistance in Moraxella (Branhamella) catarrhalis. Am J Med. 1990;88:46S–50.

    Article  PubMed  Google Scholar 

  100. Enne VI, King A, Livermore DM, Hall LM. Sulfonamide resistance in Haemophilus influenzae mediated by acquisition of sul2 or a short insertion in chromosomal folP. Antimicrob Agents Chemother. 2002;46:1934–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bower BD. Ampicillin ‘failure’ in H. influenzae meningitis. Dev Med Child Neurol. 1973;15:813–4.

    Article  CAS  PubMed  Google Scholar 

  102. Khan W, Ross S, Rodriguez W, Controni G, Saz AK. Haemophilus influenzae type B resistant to ampicillin. A report of two cases. J Am Med Assoc. 1974;229:298–301.

    Article  CAS  Google Scholar 

  103. Tomeh MO, Starr SE, MCGowan Jr JE, Terry PM, Nahmias AJ. Ampicillin-resistant Haemophilus influenzae type B infection. J Am Med Assoc. 1974;229:295–7.

    Article  CAS  Google Scholar 

  104. Farrar WE, O’DELL NM. Beta-lactamase activity in ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother. 1974;6:625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Philpott-Howard J, Williams JD. Increase in antibiotic resistance in Haemophilus influenzae in the United Kingdom since 1977: report of study group. Br Med J (Clin Res Ed). 1982;284:1597–9.

    Article  CAS  Google Scholar 

  106. Markowitz SM. Isolation of an ampicillin-resistant, non-beta-lactamase-producing strain of Haemophilus influenzae. Antimicrob Agents Chemother. 1980;17:80–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mendelman PM, Chaffin DO, Stull TL, Rubens CE, Mack KD, Smith AL. Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1984;26:235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jacobs MR, Bajaksouzian S, Zilles A, Lin G, Pankuch GA, Appelbaum PC. Susceptibilities of Streptococcus pneumoniae and Haemophilus influenzae to 10 oral antimicrobial agents based on pharmacodynamic parameters: 1997 U.S. Surveillance study. Antimicrob Agents Chemother. 1999;43:1901–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Skaare D, Anthonisen IL, Kahlmeter G, Matuschek E, Natas OB, Steinbakk M, Sundsfjord A, Kristiansen BE. Emergence of clonally related multidrug resistant Haemophilus influenzae with penicillin-binding protein 3-mediated resistance to extended-spectrum cephalosporins, Norway, 2006–2013. Euro Surveill. 2014;19:20986.

    Article  PubMed  Google Scholar 

  110. Tamargo I, Fuentes K, Llop A, Oteo J, Campos J. High levels of multiple antibiotic resistance among 938 Haemophilus influenzae type b meningitis isolates from Cuba (1990–2002). J Antimicrob Chemother. 2003;52:695–8.

    Article  CAS  PubMed  Google Scholar 

  111. Nazir J, Urban C, Mariano N, Burns J, Tommasulo B, Rosenberg C, Segal-Maurer S, Rahal JJ. Quinolone-resistant Haemophilus influenzae in a long-term care facility: clinical and molecular epidemiology. Clin Infect Dis. 2004;38:1564–9.

    Article  CAS  PubMed  Google Scholar 

  112. Walker ES, Levy F. Genetic trends in a population evolving antibiotic resistance. Evol Int J Org Evol. 2001;55:1110–22.

    Article  CAS  Google Scholar 

  113. Ambrose PG, Anon JB, Owen JS, Van Wart S, McPhee ME, Bhavnani SM, Piedmonte M, Jones RN. Use of pharmacodynamic end points in the evaluation of gatifloxacin for the treatment of acute maxillary sinusitis. Clin Infect Dis. 2004;38:1513–20.

    Article  CAS  PubMed  Google Scholar 

  114. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–10.

    Article  CAS  PubMed  Google Scholar 

  115. Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17:479–501.

    Article  PubMed  Google Scholar 

  116. Jacobs M. Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin Microbiol Infect. 2001;7:589–96.

    Article  CAS  PubMed  Google Scholar 

  117. Clinical and Laboratory Standards Institute. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guideline. 2nd ed. Wayne, PA: CLSI; 2010.

    Google Scholar 

  118. Jacobs MR. In vivo veritas: in vitro macrolide resistance in systemic Streptococcus pneumoniae infections does result in clinical failure. Clin Infect Dis. 2002;35:565–9.

    Article  PubMed  Google Scholar 

  119. Liu P, Rand KH, Obermann B, Derendorf H. Pharmacokinetic-pharmacodynamic modelling of antibacterial activity of cefpodoxime and cefixime in in vitro kinetic models. Int J Antimicrob Agents. 2005;25:120–9.

    Article  PubMed  CAS  Google Scholar 

  120. Nakamura T, Takahashi H. Antibacterial activity of oral cephems against various clinically isolated strains and evaluation of efficacy based on the pharmacokinetics/pharmacodynamics theory. Jpn J Antibiot. 2004;57:465–74.

    Article  PubMed  Google Scholar 

  121. Schaad UB. Fluoroquinolone antibiotics in infants and children. Infect Dis Clin North Am. 2005;19:617–28.

    Article  PubMed  Google Scholar 

  122. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Odenholt I, Rodloff A, Soussy CJ, Steinbakk M, Soriano F, Stetsiouk O. European Committee on Antimicrobial Susceptibility Testing (EUCAST) technical notes on antimicrobial susceptibility testing. Clin Microbiol Infect. 2006;12:501–3.

    Article  CAS  PubMed  Google Scholar 

  123. Clinical and Laboratory Standards Institute. M7-A7 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 7th ed. Wayne, PA: CLSI; 2006.

    Google Scholar 

  124. BSAC 2006. BSAC methods for antimicrobial susceptibility testing, Version 5; January 2006. http://www.bsac.org.uk/_db/_documents/version_5_.pdf.

  125. Jacobs MR, Bajaksouzian S, Windau A, Appelbaum PC, Lin G, Felmingham D, Dencer C, Koeth L, Singer ME, Good CE. Effects of various test media on the activities of 21 antimicrobial agents against Haemophilus influenzae. J Clin Microbiol. 2002;40:3269–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Reynolds R, Shackcloth J, Felmingham D, MacGowan A. Comparison of BSAC agar dilution and NCCLS broth microdilution MIC methods for in vitro susceptibility testing of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis: the BSAC Respiratory Resistance Surveillance Programme. J Antimicrob Chemother. 2003;52:925–30.

    Article  CAS  PubMed  Google Scholar 

  127. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Media preparation for EUCAST disk diffusion testing and for determination of MIC values by the broth microdilution method; 2014. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/Version_4/Media_preparation_v_4.0_EUCAST_AST.pdf.

  128. Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect. 2014;20:O255–66.

    Article  CAS  PubMed  Google Scholar 

  129. Fuchs PC, Barry AL, Brown SD. Influence of variations in test methods on susceptibility of Haemophilus influenzae to ampicillin, azithromycin, clarithromycin, and telithromycin. J Clin Microbiol. 2001;39:43–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bouchillon SK, Johnson JL, Hoban DJ, Stevens TM, Johnson BM. Impact of carbon dioxide on the susceptibility of key respiratory tract pathogens to telithromycin and azithromycin. J Antimicrob Chemother. 2005;56:224–7.

    Article  CAS  PubMed  Google Scholar 

  131. Perez-Vazquez M, Roman F, Varela MC, Canton R, Campos J. Activities of 13 quinolones by three susceptibility testing methods against a collection of Haemophilus influenzae isolates with different levels of susceptibility to ciprofloxacin: evidence for cross-resistance. J Antimicrob Chemother. 2003;51:147–51.

    Article  CAS  PubMed  Google Scholar 

  132. Sutton LD, Biedenbach DJ, Yen A, Jones RN. Development, characterization, and initial evaluations of S1. A new chromogenic cephalosporin for beta-lactamase detection. Diagn Microbiol Infect Dis. 1995;21:1–8.

    Article  CAS  PubMed  Google Scholar 

  133. Yogev R, Guzman-Cottrill J. Bacterial meningitis in children: critical review of current concepts. Drugs. 2005;65:1097–112.

    Article  CAS  PubMed  Google Scholar 

  134. Prymula R, Peeters P, Chrobok V, Kriz P, Novakova E, Kaliskova E, Kohl I, Lommel P, Poolman J, Prieels JP, Schuerman L. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet. 2006;367:740–8.

    Article  CAS  PubMed  Google Scholar 

  135. American Academy of Pediatrics. Haemophilus influenzae infections. In: Pickering LK, editor. Red Book: 2003 Report of the Committee on Infectious Diseases, 26th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2003. p. 293–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Jacobs M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jacobs, M.R. (2017). Mechanisms of Resistance in Haemophilus influenzae and Moraxella catarrhalis . In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_7

Download citation

Publish with us

Policies and ethics