Skip to main content

Resistance in Aerobic Gram-Positive Bacilli

  • Chapter
  • First Online:

Abstract

Several genera of Gram-positive bacilli are capable of causing a varietyhuman infection including Bacillus, Listeria, Erysipelothrix, Lactobacillus, Corynebacterium, Gardnerella, Actinomyces, and Nocardia. Several genera of Gram-positive bacilli are capable of causing a variety of human infections including Bacillus, Listeria, Erysipelothrix, Lactobacillus, Corynebacterium, Gardnerella, Actinomyces, and Nocardia. This chapter focuses mainly on Bacillus spp. because B. anthracis is considered one of the most important potential bioterrorist agents, B. cereus is an important cause of foodborne infections, and non-B. anthracis species are an unusual but important source of human infection, especially in immunocompromised patients. Reviewed also are Listeria monocytogenes and Nocardia spp. because of their importance as human pathogens. Understanding the antibiotic spectrum of these pathogens and their common mechanisms of antibiotic resistance is crucial to the proper therapy for these pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Turenne CY, Snyder JW, Alexander DC. Bacillus and other aerobic endospore-forming bacteria. In: Jorgensen JH, Pfaller MA, editors. Manual of clinical microbiology. Washington, DC: ASM Press; 2015. p. 441–61.

    Chapter  Google Scholar 

  2. Mock M, Fouet A. Anthrax. Ann Rev Microbiol. 2001;55:647–71.

    Article  CAS  Google Scholar 

  3. Weber DJ, Rutala WA. Risks and prevention of nosocomial transmission of rare zoonotic diseases. Clin Infect Dis. 2003;32:446–56.

    Google Scholar 

  4. Oncu S, Oncu S, Sakarya S. Anthrax—an overview. Med Sci Monit. 2003;9:RA276–83.

    PubMed  Google Scholar 

  5. Hugh-Jones M, Blackburn J. The ecology of Bacillus anthracis. Mol Aspects Med. 2009;30:356–67.

    Article  PubMed  Google Scholar 

  6. Beyer W, Turnbull PCB. Anthrax in animals. Mol Aspects Med. 2009;30:481–9.

    Article  CAS  PubMed  Google Scholar 

  7. Fasanella A, Galante D, Garofolo G, Jones MH. Anthrax undervalued zoonosis. Vet Microbiol. 2010;140:318–31.

    Article  PubMed  Google Scholar 

  8. Centers for Disease Control and Prevention. Summary of notifiable diseases—United States, 2012. Morb Mort Weekly Rep (MMWR). 2014;61:1–121.

    Google Scholar 

  9. Jernigan JA, Stephens DS, Ashford DA, et al. Bioterrorism-related inhalation anthrax: the first 10 cases reported in the United States. Emerg Infect Dis. 2001;7:933–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Inglesby TV, O’Toole T, Henderson DA, et al. Anthrax as a biological weapon, 2002. J Am Med Assoc. 2002;287:2236–52.

    Article  Google Scholar 

  11. Goel AK. Anthrax: a disease of biowarfare and public health importance. World J Clin Cases. 2015;3:20–33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Centers for Disease Control and Prevention. Biological and chemical terrorism: strategic plan for preparedness and response. Morb Mort Weekly Rep (MMWR). 2000;49(RR-4):1–14.

    Google Scholar 

  13. Grundmann O. The current state of bioterrorist attack surveillance and preparedness in the US. Risk Manage Healthc Policy. 2014;7:177–87.

    Article  Google Scholar 

  14. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev. 2000;64:548–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Driks A. The Bacillus anthracis spore. Mol Aspects Med. 2009;30:368–73.

    Article  CAS  PubMed  Google Scholar 

  16. Dixon TC, Meselson M, Guillemin J, Hanna PC. Anthrax. N Engl J Med. 1999;341:815–26.

    Article  CAS  PubMed  Google Scholar 

  17. Swartz MN. Recognition and management of anthrax—an update. N Engl J Med. 2001;345:1621–6.

    Article  CAS  PubMed  Google Scholar 

  18. Sweeney DA, Hicks CW, Cui X, Li Y, Eichacker PQ. Anthrax infection. Am J Respir Crit Care Med. 2011;184:1333–41.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hicks CW, Sweeney DA, Cui X, Li Y, Eichacker PQ. An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive Care Med. 2012;38:1092–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weber DJ, Rutala WA. Recognition and management of anthrax. N Engl J Med. 2002;346:944.

    Google Scholar 

  21. Tutrone WD, Scheinfeld NS, Weinberg JM. Cutaneous anthrax: a concise review. Cutis. 2000;69:27–33.

    Google Scholar 

  22. Celia F. Cutaneous anthrax: an overview. Dermatol Nursing. 2002;14:89–92.

    Google Scholar 

  23. Karachocagil MK, Akdeniz N, Akeniz H, et al. Cutaneous anthrax in Eastern Turkey: a review of 85 cases. Clin Exp Dermatol. 2008;33:406–11.

    Article  Google Scholar 

  24. Godyn JJ, Siderits R, Dzaman J. Cutaneous anthrax. Arch Pathol Lab Med. 2004;128:709–10.

    Google Scholar 

  25. Wenner KA, Kenner JR. Anthrax. Dermatol Clin. 2004;22:247–56.

    Google Scholar 

  26. Shafazand S, Doyle R, Ruoss S, Weinacker A, Raffin TA. Inhalation anthrax. Chest. 1999;116:1369–76.

    Article  CAS  PubMed  Google Scholar 

  27. Quintiliani Jr R, Quintiliani R. Inhalation anthrax and bioterrorism. Curr Opin Pulmon Med. 2003;9:221–6.

    Article  Google Scholar 

  28. Cuneo BM. Inhalation anthrax. Respir Care Clin N Am. 2004;10:75–82.

    Article  PubMed  Google Scholar 

  29. Beatty ME, Ashford DA, Griffin PM, Tauxe RV, Sobel J. Gastrointestinal anthrax. Arch Intern Med. 2003;163:2527–31.

    Article  PubMed  Google Scholar 

  30. Owen JL, Yang T, Mohamadzadeh M. New insights into gastrointestinal anthrax infection. Trends Mol Med. 2015;21:154–63.

    Article  CAS  PubMed  Google Scholar 

  31. Meyer ME. Neurologic complications of anthrax. Arch Neurol. 2003;60:483–8.

    Article  PubMed  Google Scholar 

  32. Lanska DJ. Anthrax meningoencephalitis. Neurol. 2002;59:327–34.

    Article  Google Scholar 

  33. Ascenzi P, Visca P, Ippolito G, Spallarossa A, Bolognesi M, Montecucco C. Anthrax toxin: a tripartite lethal combination. FEBS Lett. 2002;531:384–8.

    Article  CAS  PubMed  Google Scholar 

  34. Moayeri M, Leppla SH. The role of anthrax toxin in pathogenesis. Curr Opin Microbiol. 2004;7:19–24.

    Article  CAS  PubMed  Google Scholar 

  35. Mourez M. Anthrax toxins. Rev Physiol Biochem Pharmacol. 2004;152:135–64.

    Article  CAS  PubMed  Google Scholar 

  36. Doganay M, Metan G, Alp E. A review of cutaneous anthrax and its outcome. J Infect Public Health. 2010;3:98–105.

    Article  PubMed  Google Scholar 

  37. Godyn JJ, Reyes L, Siderits R, Hazra A. Cutaneous anthrax: conservative or surgical treatment? Adv Skin Wound Care. 2005;18:146–50.

    Article  PubMed  Google Scholar 

  38. Sirsanthana T, Nelson KE, Ezzell JW, Abshire TG. Serological studies of patients with cutaneous and oral-oropharyngeal anthrax from northern Thailand. Am Trop Med Hyg. 1988;39:575–81.

    Article  Google Scholar 

  39. Ichhpujani RL, Rajogopal V, Bhattacharya D, et al. An outbreak of human anthrax in Mysore (India). J Commun Dis. 2004;36:199–204.

    CAS  PubMed  Google Scholar 

  40. Kanafani ZA, Ghossain A, Sharara AI, Hatem JM, Kanj SS. Epidemic gastrointestinal anthrax in 1960s Lebanon: clinical manifestations and surgical findings. Emerg Infect Dis. 2003;9:520–5.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Holty J-EC, Kim RY, Bravata DM. Anthrax: a systematic review of atypical presentations. Ann Emerg Med. 2006;48:200–11.

    Article  PubMed  Google Scholar 

  42. Kyriacou DN, Stein AC, Yarnold PR, et al. Clinical predictors of bioterrorism-related inhalational anthrax. Lancet. 2004;354:449–52.

    Article  Google Scholar 

  43. Berger T, Kassirer M, Aran AA. Injectional anthrax—new presentation of an old disease. Euro Surbeill. 2014;14:1–11.

    Google Scholar 

  44. Palmateer NE, Hope VD, Roy K, et al. Injections with spore-forming bacteria in persons who inject drugs, 2000–2009. Emerg Infect Dis. 2013;19:29–34.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Abbara A, Brooks T, Taylor GP, et al. Lessons for control of heroin-associated anthrax in Europe from 2009–2010 outbreak case studies, London, UK. Emerg Infect Dis. 2014;20:1115–22.

    PubMed  PubMed Central  Google Scholar 

  46. Singh K. Laboratory-acquired infections. Clin Infect Dis. 2009;49:142–7.

    Article  PubMed  Google Scholar 

  47. Centers for Disease Control and Prevention. Surveillance for foodborne-disease outbreaks-United States, 1998–2008. Morb Mort Weekly Rep (MMWR). 2013;62(SS-2):1–34.

    Google Scholar 

  48. Dierick K, van Coillie E, Swiecicka I, et al. Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microiol. 2005;43:4277–9.

    Article  Google Scholar 

  49. Naranjo M, Denayer S, Botteldoorn N, et al. Sudden death of a young adult associated with Bacillus cereus food poisoning. J Clin Microbiol. 2011;49:4379–81.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Weber DJ, Rutala WA. Bacillus species. Infect Control Hosp Epidemiol. 1988;9:368–73.

    Article  CAS  PubMed  Google Scholar 

  51. Drobniewski FA. Bacillus cereus and related species. Clin Microbiol Rev. 1993;6:324–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett. 1997;157:223–8.

    Article  CAS  PubMed  Google Scholar 

  53. Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000;2:189–98.

    Article  CAS  PubMed  Google Scholar 

  54. Gaur AH, Shenep JL. The expanding spectrum of diseases caused by Bacillus species. Pediatr Infect Dis J. 2001;20:533–4.

    Article  CAS  PubMed  Google Scholar 

  55. Ehling-Schulz M, Fricher M, Scherer S. Bacillus cereus, the causative agent of emetic type of food-borne illness. Mol Nutr Food Res. 2004;48:479–87.

    Article  PubMed  CAS  Google Scholar 

  56. Logan NA. Bacillus and relatives in foodborne illness. Appl Microbiol. 2011;112:417–29.

    Article  CAS  Google Scholar 

  57. Arnesen LPS, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its foodborne poisoning toxins. FEMS Microbiol Rev. 2008;32:579–606.

    Article  CAS  Google Scholar 

  58. Sliman R, Rehm S, Shlaes DM. Serious infections caused by Bacillus species. Medicine. 1987;66:218–23.

    Article  CAS  PubMed  Google Scholar 

  59. Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev. 2010;23:382–98.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Samkararaman S, Velayuthan S. Bacillus cereus. Pediatr Rev. 2013;34:196–7.

    Article  Google Scholar 

  61. Dubouix A, Bonnet E, Alvarez M, et al. Bacillus cereus infections in traumatology-orthopaedics department: retrospective investigation and improvement of healthcare practices. J Infect. 2005;50:22–30.

    Article  CAS  PubMed  Google Scholar 

  62. Pillai A, Thomas S, Arora J. Bacillus cereus: the forgotten pathogen. Surg Infect. 2006;7:305–8.

    Article  Google Scholar 

  63. Rutala WA, Saviteer SM, Thomann CA, Wilson MB. Plaster-associated Bacillus cereus wound infection. Orthoped. 1986;9:575–7.

    CAS  Google Scholar 

  64. Stansfield R, Caudle S. Bacillus cereus and orthopaedic surgical wound infection associated with incontinence pads manufactured from virgin wood pulp. J Hosp Infect. 1997;37:336–8.

    Article  CAS  PubMed  Google Scholar 

  65. Dohmae S, Okubo T, Higuchi W, et al. Bacillus cereus nosocomial infection from reused towels in Japan. J Hosp Infect. 2008;69:361–7.

    Article  CAS  PubMed  Google Scholar 

  66. Reynolds DS, Flynn HW. Endophthalmitis after penetrating ocular trauma. Curr Opin Ophthalmol. 1997;8:32–8.

    Article  CAS  PubMed  Google Scholar 

  67. Duch-Samper AM, Chaques-Alepuz V, Menezo JL, Hurtado-Sarrio M. Endophthalmitis following open-glove injuries. Curr Opin Ophthalmol. 1998;9:59–65.

    Article  CAS  PubMed  Google Scholar 

  68. Choudhuri KK, Sharma S, Garg P, Rao GN. Clinical and microbiologic profile of Bacillus keratitis. Cornea. 2000;19:301–6.

    Article  CAS  PubMed  Google Scholar 

  69. Das T, Choudhury K, Sharma S, Jalali S, Nuthethi R. Clinical profile and outcome in Bacillus endophthalmitis. Ophthalmol. 2001;108:1819–25.

    Article  CAS  Google Scholar 

  70. Chhabra S, Kunimoto DY, Kazi L, et al. Endophthalmitis after open globe injury: microbiologic spectrum and susceptibilities of isolates. Am J Ophthalmol. 2006;142:852–4.

    Article  PubMed  Google Scholar 

  71. Durand ML. Endophthalmitis. Clin Microbiol Infect. 2013;19:227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gaur AH, Patrick CC, McCullers JA, et al. Bacillus cereus bacteremia and meningitis in immunocompromised children. Clin Infect Dis. 2001;32:1456–62.

    Article  CAS  PubMed  Google Scholar 

  73. Weisse ME, Bass JW, Jarrett RV, Vincent JM. Nonanthrax Bacillus infections of the central nervous system. Pediatr Infect Dis J. 1991;10:243–6.

    Article  CAS  PubMed  Google Scholar 

  74. Tokieda K, Morikawa Y, Maeyama K, Mori K, Ikeda K. Clinical manifestations of Bacillus cereus meningitis in newborn infants. J Paediatr Child Health. 1999;35:582–4.

    Article  CAS  PubMed  Google Scholar 

  75. Moanickam N, Knorr A, Muldrew KL. Neonatal meningoencephalitis caused by Bacillus cereus. Pediatr Infect Dis J. 2008;27:843–6.

    Article  Google Scholar 

  76. Frankard J, Li R, Taccone F, Struelens MJ, Jacobs F, Kentos A. Bacillus cereus pneumonia in a patient with acute lymphoblastic leukemia. Eur J Microbiol Infect Dis. 2004;23:725–8.

    CAS  Google Scholar 

  77. Miyata J, Tasaka S, Miyazaki M, et al. Bacillus cereus necrotizing pneumonia in a patient with nephrotic syndrome. Intern Med. 2013;52:101–4.

    Article  PubMed  Google Scholar 

  78. Steen MK, Bruno-Murtha LA, Chaux G, Lazar H, Bernard S, Sulis C. Bacillus cereus endocarditis: report of a case and review. Clin Infect Dis. 1992;14:945–6.

    Article  CAS  PubMed  Google Scholar 

  79. Castedo E, Castro A, Martin P, Roda J, Montero CG. Bacillus cereus prosthetic valve endocarditis. Ann Thorac Surg. 1999;68:2351–2.

    Article  CAS  PubMed  Google Scholar 

  80. Lee YL, Shih SD, Weng YJ, Chen C, Liu CE. Fatal spontaneous bacterial peritonitis and necrotizing fasciitis with bacteremia caused by Bacillus cereus in a patient with cirrhosis. J Med Microbiol. 2010;59:242–4.

    Article  PubMed  Google Scholar 

  81. Hilliard NJ, Schelonka RL, Waites KB. Bacillus cereus bacteremia in a preterm neonate. J Clin Microbiol. 2003;41:3441–4.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Musa MO, Al Douri MA, Khan S, Shafi T, Al HA, Al Rasheed AM. Fulminant septicaemic syndrome of Bacillus cereus: three case reports. J Infect. 1999;39:154–6.

    Article  CAS  PubMed  Google Scholar 

  83. Uchino Y, Iriyama N, Matsumoto K, et al. A case series of Bacillus cereus septicemia in patients with hematological disease. Intern Med. 2012;51:2733–8.

    Article  CAS  PubMed  Google Scholar 

  84. Zinner SH. Changing epidemiology of infections in patients with neutropenia and cancer: emphasis on Gram-positive and resistant bacteria. Clin Infect Dis. 1999;29:490–4.

    Article  CAS  PubMed  Google Scholar 

  85. Ozkocaman V, Ozcelik T, Ali R, et al. Bacillus spp. among hospitalized patients with haematological malignancies: clinical features, epidemics and outcomes. J Hosp Infect. 2006;64:169–76.

    Article  CAS  PubMed  Google Scholar 

  86. Clinical and Laboratory Standards Institute. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guideline, 2nd ed. M45-A2, vol. 30, No. 18. Wayne, PA: Clinical and Laboratory Standards Institute.

    Google Scholar 

  87. Mohammed MJ, Marston CK, Popovic T, Weyant RS, Tenover FC. Antimicrobial susceptibility testing of Bacillus anthracis: comparison of results obtained by using the National Committee for Clinical Laboratory Standards broth microdilution reference and Etest agar gradient diffusion methods. J Clin Microbiol. 2002;40:1902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luna VA, King DS, Gulledge J, Cannons AC, Amuso PT, Cattani J. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides, and Bacillus thuringiensis to 24 antimicrobials using Sensititre® automated microbroth dilution and Etest® agar gradient diffusion methods. J Antimicrob Chemother. 2007;60:555–67.

    Article  CAS  PubMed  Google Scholar 

  89. Weigel LM, Sue D, Michel PA, Kitchel B, Pillai P. A rapid antimicrobial susceptibility test for Bacillus anthracis. Antimicrob Agents Chemother. 2010;54:2793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lightfoot NF, Scott RJD, Turnbull PCB. Antimicrobial susceptibility of Bacillus anthracis. Salisbury Med Bull. 1990;68(Suppl):95–8.

    Google Scholar 

  91. Odendaal MW, Pieterson PM, de Vos V, Botha AD. The antibiotic sensitivity patterns of Bacillus anthracis isolated from Kruger National Park. Onderstepoort J Vet Res. 1991;58:17–9.

    CAS  PubMed  Google Scholar 

  92. Doganay M, Aydin N. Antimicrobial susceptibility of Bacillus anthracis. Scand J Infect Dis. 1991;23:333–5.

    Article  CAS  PubMed  Google Scholar 

  93. Bryskier A. Bacillus anthracis and antibacterial agents. Clin Microbiol Infect. 2002;8:467–78.

    Article  CAS  PubMed  Google Scholar 

  94. Drago L, de Vecchi E, Lombardi A, Nicola L, Valli M, Gismondo MR. Bactericidal activity of levofloxacin, gatifloxacin, penicillin, meropenem and rokitamycin against Bacillus anthracis clinical isolates. J Antimicrobial Chemother. 2002;50:1059–63.

    Article  CAS  Google Scholar 

  95. Bakici MZ, Eladi N, Bakir M, Bokmetas I, Erandac M, Turan M. Antimicrobial susceptibility of Bacillus anthracis in an endemic area. Scand J Infect Dis. 2002;34:564–6.

    Article  CAS  PubMed  Google Scholar 

  96. Cavallo J-D, Ramisse F, Girardet M, Vaissaire J, Mock M, Hernandez E. Antimicrobial susceptibilities of 96 isolates of Bacillus anthracis isolated in France between 1994 and 2000. Antimicrob Agents Chemother. 2002;46:2307–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Coker PR, Smith KL, Hugh-Jones ME. Antimicrobial susceptibilities of diverse Bacillus anthracis isolates. Antimicrob Agents Chemother. 2002;46:3843–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Frean J, Klugman KP, Arntzen L, Bukofzer S. Susceptibility of Bacillus anthracis to eleven antimicrobial agents including novel fluoroquinolones and a ketolide. J Antimicrob Chemother. 2003;52:297–9.

    Article  CAS  PubMed  Google Scholar 

  99. Jones ME, Goguen J, Critchley IA, et al. Antibiotic susceptibility of isolates of Bacillus anthracis, a bacterial pathogen with the potential use in biowarfare. Clin Microbiol Infect. 2003;9:984–6.

    Article  CAS  PubMed  Google Scholar 

  100. Turnbull PCB, Sirianni NM, LeBron CI, et al. MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by Etest. J Antimicrob Chemother. 2004;42:3626–34.

    CAS  Google Scholar 

  101. Maho A, Rossano A, Hachler H, et al. Antibiotic susceptibility and molecular diversity of Bacillus anthracis strains in Chad: Detection of a new phylogenic group. J Clin Microbiol. 2006;44:3422–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ortatatli M, Karagoz A, Percin D, Kenar L, Kilic S. Antimicrobial susceptibility and molecular subtyping of 55 Turkish Bacillus anthracis strains using 25-loci multiple-locus VNTR analysis. Comp Immunol Microbiol Infect Dis. 2012;35:355–61.

    Article  PubMed  Google Scholar 

  103. Durmaz R, Doganay M, Sahin M, et al. Molecular epidemiology of the Bacillus anthracis isolates collected throughout Turkey from 1983 to 2011. Eur J Clin Microbiol Infect Dis. 2012;31:2783–90.

    Article  CAS  PubMed  Google Scholar 

  104. Heine HS, Purcell BK, Bassett J, Miller L, Goldstein BP. Activity of dalbavancin against Bacillus anthracis in vitro and in a mouse inhalation anthrax model. Antimicrob Agents Chemother. 2010;54:991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Heine HS, Bassett J, Miller L, et al. Efficacy of oritavancin in a murine model of Bacillus anthracis spore inhalation anthrax. Antimicrob Agents Chemother. 2008;52:3350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Athamna A, Massalha M, Athamna M, et al. In vitro susceptibilities of Bacillus anthracis to various antibacterial agents and time-kill activity. J Antimicrob Chemother. 2004;53:247–51.

    Article  CAS  PubMed  Google Scholar 

  107. Athamna A, Athamna M, Nura A, et al. Is in vitro antibiotic combination more effective than single-drug therapy against anthrax. Antimicrob Agents Chemother. 2005;49:1323–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Anthamna A, Athamna M, Medlej B, Bast DJ, Rubinstein E. In vitro post-antibiotic effect of fluoroquinolones, macrolides, β-lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin-dalfopristin and rifampin on Bacillus anthracis. J Antimicrob Chemother. 2004;53:609–15.

    Article  CAS  Google Scholar 

  109. Severn M. A fatal case of pulmonary anthrax. Br Med J. 1976;1:748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bradaric N, Punda-Polic J. Cutaneous anthrax due to penicillin-resistant Bacillus anthracis transmitted by insect bite. Lancet. 1992;340:306–7.

    Article  CAS  PubMed  Google Scholar 

  111. Lalitha MK. Penicillin resistance in Bacillus anthracis. Lancet. 1997;349:1522.

    Article  CAS  PubMed  Google Scholar 

  112. Chen Y, Tenover FC, Koehler TM. β-lactamase gene expression in a penicillin-resistant Bacillus anthracis strain. Antimicrob Agents Chemother. 2004;48:4873–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen Y, Succi J, Tenover FC, Koehler TM. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J Bacteriol. 2003;185:823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Materon IC, Queenan AM, Koehler TM, Bush K, Palzkill T. Biochemical characterization of β-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob Agents Chemother. 2003;47:2040–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beharry Z, Chen H, Gadhachanda VR, Buynak JD, Palzkill T. Evaluation of penicillin-based inhibitors of the class A and B β-lactamases from Bacillus anthracis. Biochem Biophysical Res Commun. 2004;313:541–5.

    Article  CAS  Google Scholar 

  116. Kim HS, Choi EC, Kim BK. A macrolide-lincosamide-streptogramin B resistance determination from Bacillus anthracis 590: cloning and expression of ermJ. J Gen Microbiol. 1993;139:601–7.

    Article  CAS  PubMed  Google Scholar 

  117. Choe CH. In vitro development of resistance to ofloxacin and doxycycline in Bacillus anthracis Sterne. Antimicrob Agents Chemother. 2000;44:1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brook I, Elliott TB, Pryor II HI, et al. In vitro resistance of Bacillus anthracis Sterne to doxycycline, macrolides and quinolones. Int J Antimicrob Agents. 2001;18:559–62.

    Article  CAS  PubMed  Google Scholar 

  119. Athamna A, Athamna M, Abu-Rashed N, Medlej B, Bast DJ, Rubinstein E. Selection of Bacillus anthracis isolates resistant to antibiotics. J Antimicrob Chemother. 2004;54:424–8.

    Article  CAS  PubMed  Google Scholar 

  120. Hendricks KA, Wright ME, Shadomy SV, et al. Centers for Disease Control and Prevention expert panel meetings on prevention and treatment of anthrax in adults. Emerg Infect Dis. 2014;20, e130687.

    Article  PubMed Central  Google Scholar 

  121. Friedlander AM, Welkos SL, Pitt ML, et al. Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis. 1993;167:1239–43.

    Article  CAS  PubMed  Google Scholar 

  122. Meselson M, Guillemin J, Langmuir MH-A, Popova I, Yampolskaya ASO. The Sverdlovsk anthrax outbreak of 1979. Science. 1994;266:1202–8.

    Article  CAS  PubMed  Google Scholar 

  123. Barlett JG, Inglesby TV, Borio L. Management of anthrax. Clin Infect Dis. 2002;35:851–8.

    Article  Google Scholar 

  124. Sejvar JJ, Tenover FC, Stephens DS. Management of anthrax meningitis. Lancet Infect Dis. 2005;5:287–95.

    Article  PubMed  Google Scholar 

  125. Annane D, Bellissant E, Bollaert PE, Briegel J, Confalonieri M, De Gaudio R. Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. J Am Med Assoc. 2009;301:2362–75.

    Article  CAS  Google Scholar 

  126. Andrews JM, Wise R. Susceptibility testing of Bacillus species. J Antimicrob Chemother. 2002;49:1039–46.

    Article  CAS  Google Scholar 

  127. Weber DJ, Saviteer SM, Rutala WA, Thomann CA. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents. Antimicrob Agents Chemother. 1988;32:642–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Turnbull PCB, Sirianni NM, LeBron CI, et al. MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by the Etest. J Clin Microbiol. 2004;42:3626–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Banerjee C, Bustamante CI, Wharton R, Talley E, Wade JC. Bacillus infections in patients with cancer. Arch Intern Med. 1988;148:1769–74.

    Article  CAS  PubMed  Google Scholar 

  130. Wong MT, Dolan MJ. Significant infections due to Bacillus species following abrasions associated with motor vehicle-related trauma. Clin Infect Dis. 1992;15:855–7.

    Article  CAS  PubMed  Google Scholar 

  131. Krause A, Freeman R, Sisson PR, Murphy OM. Infection with Bacillus cereus after close-range gunshot injuries. J Trauma. 1996;41:546–8.

    Article  CAS  PubMed  Google Scholar 

  132. Kunimoto DK, Das T, Sharma S, et al. Microbiologic spectrum and susceptibility of isolates: part II. Posttraumatic endophthalmitis. Am J Ophthalmol. 1999;128:242–4.

    Article  CAS  PubMed  Google Scholar 

  133. Handal T, Olsen I, Walker CB, Caugant DA. β-lactamase production and antimicrobial susceptibility of subgingival bacteria from refractory periodontitis. Oral Microbiol Immunol. 2004;19:303–8.

    Article  CAS  PubMed  Google Scholar 

  134. Callegan MC, Cochran DC, Kane ST, et al. Virulence factor profiles and antimicrobial susceptibilities of ocular Bacillus isolates. Curr Eye Res. 2006;31:693–702.

    Article  CAS  PubMed  Google Scholar 

  135. Horii T, Notake S, Tamai K, Yanagisawa H. Bacillus cereus from blood cultures: virulence genes, antimicrobial susceptibility and risk factors for blood stream infection. FEMS Immunol Med Microbiol. 2011;63:202–9.

    Article  CAS  PubMed  Google Scholar 

  136. Johnson DM, Biedenbach DJ, Jones RN. Potency and antimicrobial spectrum update for piperacillin/tazobactam (2000): emphasis on its activity against resistant organism populations and generally untested species causing community-acquired respiratory tract infections. Diag Microbiol Infect Dis. 2002;43:49–60.

    Article  CAS  Google Scholar 

  137. Streit JM, Jones RN, Sadar HS. Daptomycin activity and spectrum: a worldwide sample of 6737 clinical Gram-positive organisms. J Antimicrob Chemother. 2004;53:669–74.

    Article  CAS  PubMed  Google Scholar 

  138. Gigantelli JW, Gomez JT, Osato MS. In vitro susceptibilities of ocular Bacillus cereus isolates to clindamycin, gentamicin, and vancomycin alone or in combination. Antimicrob Agents Chemother. 1991;35:201–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Coonrod JD, Leadley PJ, Eickhoff TC. Antibiotic susceptibility of Bacillus species. J Infect Dis. 1971;123:102–5.

    Article  CAS  PubMed  Google Scholar 

  140. Uraz G, Simsek H, Maras Y. Determination of beta-lactamase activities and antibiotic susceptibility of some Bacillus strains causing food poisoning. Drug Metabol Drug Interact. 2001;18:69–77.

    Article  CAS  PubMed  Google Scholar 

  141. Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of healthcare-associated infections. N Engl J Med. 2014;370:1198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Spaulding EH. Chemical sterilization of surgical instruments. Surg Gynecol Obstet. 1939;69:738–44.

    CAS  Google Scholar 

  143. Weber DJ, Sickbert-Bennett E, Gergen MF, Rutala WA. Efficacy of selected hand hygiene agents used to remove Bacillus atropheus (a surrogate of Bacillus anthracis) from contaminated hands. J Am Med Assoc. 2003;289:1274–7.

    Article  CAS  Google Scholar 

  144. Centers for Disease Control and Prevention. Update: cutaneous anthrax in a laboratory worker—Texas, 2002. Morb Mort Weekly Rep (MMWR). 2002;51:482.

    Google Scholar 

  145. Hseuh P-R, Teng L-J, Yang P-C, Pan H-H, Ho S-W, Luh K-T. Nosocomial pseudoepidemic caused by Bacillus cereus traced to contaminated ethyl alcohol from a liquor factory. J Clin Microb. 1999;37:2280–4.

    Google Scholar 

  146. Brazis AR, Leslie JE, Kabler PW, Woodward RL. The inactivation of spores of Bacillus globigii and Bacillus anthracis by free available chlorine. Appl Microbiol. 1958;6:338–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lensing HH, Oei HL. Investigations on the sporicidal and fungicidal activity of disinfectants. Zentralbl Bakteriol Mikrobiol Hyg{b}. 1985;181:487–95.

    Google Scholar 

  148. Russell AD. Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect. 1998;4(Suppl):S57–68.

    Google Scholar 

  149. Whitney EAS, Beatty ME, Taylor TH, Weyant R, Sobel J, Arduino MJ, Ashford DA. Inactivation of Bacillus anthracis spores. Emerg Infect Dis. 2003;9:623–7.

    Article  PubMed Central  Google Scholar 

  150. Wellinghausen N. Listeria and Erysipelothrix. In: Jorgensen JH, Pfaller MA, editors. Manual of clinical microbiology. Washington, DC: ASM Press; 2015. p. 462–73.

    Chapter  Google Scholar 

  151. Lorber B. Listeriosis. Clin Infect Dis. 1997;24:1–11.

    Article  CAS  PubMed  Google Scholar 

  152. Doganay M. Listeriosis: clinical presentation. FEMS Immunol Med Microbiol. 2003;35:173–5.

    Article  CAS  PubMed  Google Scholar 

  153. Hernandez-Milian A, Payeras-Cifre A. What is new in listeriosis? Biomed Res Int. 2014;358051:1–7.

    Google Scholar 

  154. Kourtis A, Read JS, Jamieson DJ. Pregnancy and infection. N Engl J Med. 2014;370:2211–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Barbosa J, Magelhaes R, Santos I, et al. Evaluation of antibiotic resistance patterns of food and clinical Listeria monocytogenes isolates in Portugal. Foodborne Pathol Dis. 2013;10:861–6.

    Article  CAS  Google Scholar 

  156. Charpentier E, Gerbaud G, Jacquet C, Rocourt J, Courvalin P. Incidence of antibiotic resistance in Listeria species. J Infect Dis. 1995;172:277–81.

    Article  CAS  PubMed  Google Scholar 

  157. Granier SA, Moubareck C, Colaneri C, et al. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl Environ Microbiol. 2011;77:2788–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Prieto M, Martinez C, Aguerre L, Rocca MF, Cipolla L, Callejo R. Antibiotic susceptibility of Listeria monocytogenes in Argentina. Enferm Infec Microbiol Clin. 2016;34:91–5.

    Google Scholar 

  159. Dos Reis CMF, Barbosa AV, Rusak LA, Vallim DC, Hofer E. Antibiotic susceptibility of Listeria monocytogenes human strains isolated from 1970 to 2008 in Brazil. Rev Soc Bras Med Trop. 2011;44:173–6.

    Article  PubMed  Google Scholar 

  160. Charpentier E, Courvalin P. Emergence of trimethoprim resistance gene dfrD in Listeria monocytogenes BM4293. Antimicrob Agents Chemother. 1997;41:1134–6.

    Google Scholar 

  161. Charpentier E, Courvalin P. Antibiotic resistance in Listeria monocytogenes. Antimicrob Agents Chemother. 1999;43:2103–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Conville PS, Witebsky FG. Nocardia, Rhodococcus, Gordonia, Actinomadura, Streptomyces, and other aerobic Actinomycetes. In: Jorgensen JH, Pfaller MA, editors. Manual of clinical microbiology. Washington, DC: ASM Press; 2015. p. 504–35.

    Google Scholar 

  163. Rosman Y, Grossman E, Keller N, et al. Nocardiosis: a 15-year experience in a tertiary medical center in Israel. Eur J Intern Med. 2013;24:552–7.

    Article  PubMed  Google Scholar 

  164. Ambrosioni J, Lew D, Garbino J. Nocardiosis: updated clinical review and experience at a tertiary center. Infection. 2010;38:89–97.

    Article  CAS  PubMed  Google Scholar 

  165. Martinez R, Reyes S, Menendez R. Pulmonary nocardiosis: risk factors, clinical features, diagnosis and prognosis. Curr Opin Pulm Med. 2008;14:219–27.

    Article  PubMed  Google Scholar 

  166. Anagnostou T, Arvanitis M, Kourkoumpetis TK, Desalermos A, Carneiro HA, Mylonakis E. Nocardiosis of the central nervous system: experience from a general hospital and review of 84 cases from the literature. Medicine. 2014;93:19–32.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Dodiuk-Gad R, Cohen E, Ziv M, et al. Cutaneous nocardiosis: report of two cases and review of the literature. Int J Dermatol. 2010;49:1380–5.

    Article  PubMed  Google Scholar 

  168. Wilson JW. Nocardiosis: updates and clinical overview. Mayo Clin Proc. 2012;87:403–7.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Clinical and Laboratory Standards Institute. Susceptibility testing of Mycobacteria, Nocardiae, and other aerobic Actinomycetes; approved standard, 2nd ed. 2011. M24-A2, vol. 31, No. 5. p. 43.

    Google Scholar 

  170. Lai C-C, Liu W-L, Ko W-C, et al. Multicenter study in Taiwan of the in vitro activities of nemonoxacin, tigecycline, doripenem, and other antimicrobial agents against clinical isolates of various Nocardia species. Antimicrob Agents Chemother. 2011;55:2084–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Larruskain J, Idigoras P, Marimon JM, Perez-Trallero E. Susceptibility of 186 Nocardia sp. isolates to 20 antimicrobial agents. Antimicrob Agents Chemother. 2011;55:2995–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Schlaberg R, Fisher MA, Hanson KE. Susceptibility profiles of Nocardia isolates based on current taxonomy. Antimicrob Agents Chemother. 2014;58:795–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. McTaggart LR, Doucet J, Witkowska M, Richardson SE. Antimicrobial susceptibility among clinical Nocardia species identified by multilocus sequence analysis. Antimicrob Agents Chemother. 2015;59:269–75.

    Article  PubMed  CAS  Google Scholar 

  174. Welsh O, Vera-Cabrera L, Salina-Carmona MC. Current treatment for Nocardia infections. Expert Opin Pharmacother. 2013;14:2387–8.

    Article  CAS  PubMed  Google Scholar 

  175. Uhde KB, Pathak S, Jr MC, et al. Antimicrobial-resistant Nocardia isolates, United States, 1995–2004. Clin Infect Dis. 2010;51:1445–8.

    Article  PubMed  Google Scholar 

  176. Tremblay J, Thibert L, Alarie I, Valiquette L, Pepin J. Nocardiosis in Quebec, Canada, 1988–2008. Clin Microbiol Infect. 2011;17:690–6.

    Article  CAS  PubMed  Google Scholar 

  177. Brown-Elliott BA, Biehle J, Conville PS, et al. Sulfonamide resistance in isolates of Nocardia ssp. from a U.S. multicenter survey. J Clin Microbiol. 2012;50:670–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Conville PS, Brown-Elliott BA, Wallace Jr. RJ, et al. Multistate reproducibility of broth microdilution method for susceptibility testing of Nocardia species. J Clin Microbiol. 2012;50:1270–80.

    Google Scholar 

  179. Valdezate S, Garrido N, Carrasco G, Villalon P, Medina-Pascual MJ, Saez-Nieto JA. Resistance gene pool to co-trimoxazole in non-susceptible Nocardia strains. Front Microbiol. 2015;6:Article 376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Weber M.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Weber, D.J., Miller, M.B., Rutala, W.A. (2017). Resistance in Aerobic Gram-Positive Bacilli . In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_5

Download citation

Publish with us

Policies and ethics