Skip to main content

Resistance in Streptococcus pneumoniae

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Streptococcus pneumoniae (the pneumococcus) has been an important human pathogen for over 100 years and continues to cause a wide variety of infections, ranging from mild otitis media and sinusitis to serious lower respiratory infections, as well as life-threatening invasive infections such as meningitis or pneumonia. Worldwide, morbidity and mortality due to pneumococcal infections are highest among young children below the age of 5 years, accounting for approximately one-third of the estimated 1.3 million deaths from pneumonia in 2011 [1]. The pneumococcus is a common colonizer in the respiratory tract, especially in the nasopharynx of children where it is often exposed to antimicrobials. As well as affecting the young, S. pneumoniae is an important cause of morbidity and mortality in the elderly; it is the most common etiological agent of community-acquired pneumonia, often resulting in hospitalization of previously healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer Walker CL, Rudan I, Liu L, et al. Global burden of childhood pneumonia and diarrhoea. Lancet. 2013;381:1405–16.

    Article  Google Scholar 

  2. Castanheira M, Gales AC, Mendes RE, et al. Antimicrobial susceptibility of Streptococcus pneumoniae in Latin America: results from five years of the SENTRY Antimicrobial Surveillance Program. Clin Microbiol Infect. 2004;10:645–51.

    Article  CAS  PubMed  Google Scholar 

  3. Reinert RR, Reinert S, van der Linden M, et al. Antimicrobial susceptibility of Streptococcus pneumoniae in eight European countries from 2001 to 2003. Antimicrob Agents Chemother. 2005;49:2903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McGee L, McDougal L, Zhou J, et al. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J Clin Microbiol. 2001;39:2565–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cardozo DM, Nascimento-Carvalho CM, Andrade AL, et al. Prevalence and risk factors for nasopharyngeal carriage of Streptococcus pneumoniae among adolescents. J Med Microbiol. 2008;57:185–9.

    Article  PubMed  Google Scholar 

  6. Dagan R, Melamed R, Muallem M, et al. Nasopharyngeal colonization in southern Israel with antibiotic-resistant pneumococci during the first 2 years of life: relation to serotypes likely to be included in pneumococcal conjugate vaccines. J Infect Dis. 1996;174:1352–5.

    Article  CAS  PubMed  Google Scholar 

  7. Zenni MK, Cheatham SH, Thompson JM, et al. Streptococcus pneumoniae colonization in the young child: association with otitis media and resistance to penicillin. J Pediatr. 1995;127:533–7.

    Article  CAS  PubMed  Google Scholar 

  8. Mehr S, Wood N. Streptococcus pneumoniae—a review of carriage, infection, serotype replacement and vaccination. Paediatr Resp Rev. 2012;13:258–64.

    Article  Google Scholar 

  9. Hausdorff WP, Feikin DR, Klugman KP. Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis. 2005;5:83–93.

    Article  PubMed  Google Scholar 

  10. Klugman KP, Friedland IR. Antibiotic-resistant pneumococci in pediatric disease. Microb Drug Resist. 1995;1:5–8.

    Article  CAS  PubMed  Google Scholar 

  11. Bronzwaer S, Cars O, Buchholz U, et al. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerg Infect Dis. 2002;8:278–82.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Van Eldere J, Mera RM, Miller LA, et al. Risk factors for development of multiple-class resistance to Streptococcus pneumoniae strains in Belgium over a 10-year period: antimicrobial consumption, population density, and geographic location. Antimicrob Agents Chemother. 2007;51:3491–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Arason VA, Kristinsson KG, Sigurdsson JA, et al. Do antimicrobials increase the carriage rate of penicillin resistant pneumococci in children? Cross sectional prevalence study. Br Med J. 1996;313:387–91.

    Article  CAS  Google Scholar 

  14. Levine OS, Farley M, Harrison LH, et al. Risk factors for invasive pneumococcal disease in children: a population-based case-control study in North America. Pediatrics. 1999;103, E28.

    Article  CAS  PubMed  Google Scholar 

  15. Samore MH, Magill MK, Alder SC, et al. High rates of multiple antibiotic resistance in Streptococcus pneumoniae from healthy children living in isolated rural communities: association with cephalosporin use and intrafamilial transmission. Pediatrics. 2001;108:856–65.

    Article  CAS  PubMed  Google Scholar 

  16. Vanderkooi OG, Low DE, Green K, et al. Predicting antimicrobial resistance in invasive pneumococcal infections. Clin Infect Dis. 2005;40:1288–97.

    Article  CAS  PubMed  Google Scholar 

  17. Dias R, Caniça M. Emergence of invasive erythromycin-resistant Streptococcus pneumoniae strains in Portugal: contribution and phylogenetic relatedness of serotype 14. J Antimicrob Chemother. 2004;54:1035–9.

    Article  CAS  PubMed  Google Scholar 

  18. Dagan R, Barkai G, Givon-Lavi N, et al. Seasonality of antibiotic-resistant Streptococcus pneumoniae that causes acute otitis media: a clue for an antibiotic-restriction policy? J Infect Dis. 2008;197:1094–102.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feikin DR, Dowell SF, Nwanyanwu OC, et al. Increased carriage of trimethoprim/sulfamethoxazole-resistant Streptococcus pneumoniae in Malawian children after treatment for malaria with sulfadoxine/pyrimethamine. J Infect Dis. 2000;181:1501–5.

    Article  CAS  PubMed  Google Scholar 

  20. Chen DK, McGeer A, de Azavedo JC, et al. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. N Engl J Med. 1999;341:233–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ho PL, Tse WS, Tsang KW, et al. Risk factors for acquisition of levofloxacin-resistant Streptococcus pneumoniae: a case-control study. Clin Infect Dis. 2001;32:701–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kupronis BA, Richards CL, Whitney CG, Active Bacterial Core Surveillance Team. Invasive pneumococcal disease in older adults residing in long-term care facilities and in the community. J Am Geriatr Soc. 2003;51:1520–5.

    Article  PubMed  Google Scholar 

  23. von Gottberg A, Klugman KP, Cohen C, et al. Emergence of levofloxacin-non-susceptible Streptococcus pneumoniae and treatment for multidrug-resistant tuberculosis in children in South Africa: a cohort observational surveillance study. Lancet. 2008;371:1108–13.

    Article  Google Scholar 

  24. Mthwalo M, Wasas A, Huebner R, et al. Antimicrobial resistance of nasopharyngeal isolates of Streptococcus pneumoniae from children in Lesotho. Bull WHO. 1998;76:641–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Crowther-Gibson P, Cohen C, Klugman KP, et al. Risk factors for multidrug-resistant invasive pneumococcal disease in South Africa, a setting with high HIV prevalence, in the prevaccine era from 2003 to 2008. Antimicrob Agents Chemother. 2012;56:5088–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hofmann J, Cetron MS, Farley MM, et al. The prevalence of drug-resistant Streptococcus pneumoniae in Atlanta. N Engl J Med. 1995;333:481–6.

    Article  CAS  PubMed  Google Scholar 

  27. Schrag SJ, Pena C, Fernandez J, et al. Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. J Am Med Assoc. 2001;286:49–56.

    Article  CAS  Google Scholar 

  28. Bedos JP, Chevret S, Chastang C, et al. Epidemiological features of and risk factors for infection by Streptococcus pneumoniae strains with diminished susceptibility to penicillin: findings of a French survey. Clin Infect Dis. 1996;22:63–72.

    Article  CAS  PubMed  Google Scholar 

  29. Jacobs MR, Koornhof HJ, Robins-Browne RM, et al. Emergence of multiply resistant pneumococci. N Engl J Med. 1978;299:735–40.

    Article  CAS  PubMed  Google Scholar 

  30. Soeters HM, von Gottberg A, Cohen C, et al. Trimethoprim-sulfamethoxazole prophylaxis and antibiotic nonsusceptibility in invasive pneumococcal disease. Antimicrob Agents Chemother. 2012;56:1602–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buie KA, Klugman KP, von Gottberg A, et al. Gender as a risk factor for both antibiotic resistance and infection with pediatric serogroups/serotypes, in HIV-infected and -uninfected adults with pneumococcal bacteremia. J Infect Dis. 2004;189:1996–2000.

    Article  PubMed  Google Scholar 

  32. Wyres KL, Lambertsen LM, Croucher NJ, et al. The multidrug-resistant PMEN1 pneumococcus is a paradigm for genetic success. Genome Biol. 2012;13:R103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Corso A, Severina EP, Petruk VF, et al. Molecular characterisation of penicillin-resistant Streptococcus pneumoniae isolates causing respiratory disease in the United States. Microb Drug Resist. 1998;4:325–37.

    Article  CAS  PubMed  Google Scholar 

  34. Richter SS, Heilmann KP, Dohrn CL, et al. Changing epidemiology of antimicrobial-resistant Streptococcus pneumoniae in the United States, 2004–2005. Clin Infect Dis. 2009;48:23–33.

    Article  Google Scholar 

  35. Simões AS, Pereira L, Nunes S, et al. Clonal evolution leading to maintenance of antibiotic resistance rates among colonizing Pneumococci in the PCV7 era in Portugal. J Clin Microbiol. 2011;49:2810–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Croucher NJ, Harris SR, Fraser C, et al. Rapid pneumococcal evolution in response to clinical interventions. Science. 2011;331:430–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hiller NL, Eutsey RA, Powell E, et al. Differences in genotype and virulence among four multidrug-resistant Streptococcus pneumoniae isolates belonging to the PMEN1 clone. PLoS ONE. 2011;6, e28850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beall BW, Gertz RE, Hulkower RL, et al. Shifting genetic structure of invasive serotype 19A pneumococci in the United States. J Infect Dis. 2011;203:1360–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beall B, McEllistrem MC, Gertz Jr RE, et al. Pre- and post-vaccination clonal compositions of invasive pneumococcal serotypes for isolates collected in the United States in 1999, 2001, and 2002. J Clin Microbiol. 2006;44:999–1017.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pai R, Moore MR, Pilishvili T, et al. Postvaccine genetic structure of Streptococcus pneumoniae serotype 19A from children in the United States. J Infect Dis. 2005;192:1988–95.

    Article  CAS  PubMed  Google Scholar 

  41. Edson DC, Glick T, Massey LD. Susceptibility testing practices for Streptococcus pneumoniae: results of a proficiency testing survey of clinical laboratories. Diagn Microbiol Infect Dis. 2006;55:225–30.

    Article  CAS  PubMed  Google Scholar 

  42. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement. CLSI document M100–S18. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  43. Carvalho Mda G, Tondella ML, McCaustland K, et al. Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. J Clin Microbiol. 2007;45:2460–6.

    Article  PubMed  CAS  Google Scholar 

  44. Harris KA, Turner P, Green EA, et al. Duplex real-time PCR assay for detection of Streptococcus pneumoniae in clinical samples and determination of penicillin susceptibility. J Clin Microbiol. 2008;46:2751–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Srinivasan V, du Plessis M, Beall BW, et al. Quadriplex real-time polymerase chain reaction (lytA, mef, erm, pbp2b(wt)) for pneumococcal detection and assessment of antibiotic susceptibility. Diagn Microbiol Infect Dis. 2011;71:453–6.

    Article  CAS  PubMed  Google Scholar 

  46. Fukushima KY, Yanagihara K, Hirakata Y, et al. Rapid identification of penicillin and macrolide resistance genes and simultaneous quantification of Streptococcus pneumoniae in purulent sputum samples by use of a novel real-time multiplex PCR assay. J Clin Microbiol. 2008;46:2384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kearns AM, Graham C, Burdess D, et al. Rapid real-time PCR for determination of penicillin susceptibility in pneumococcal meningitis, including culture-negative cases. J Clin Microbiol. 2002;40:682–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zettler EW, Scheibe RM, Dias CA, et al. Determination of penicillin resistance in Streptococcus pneumoniae isolates from southern Brazil by PCR. Int J Infect Dis. 2006;10:110–5.

    Article  CAS  PubMed  Google Scholar 

  49. Cassone M, D’Andrea MM, Iannelli F, et al. DNA microarray for detection of macrolide resistance genes. Antimicrob Agents Chemother. 2006;50:2038–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haanperä M, Huovinen P, Jalava J. Detection and quantification of macrolide resistance mutations at positions 2058 and 2059 of the 23S rRNA gene by pyrosequencing. Antimicrob Agents Chemother. 2005;49:457–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Austrian R, Gold J. Pneumococcal bacteremia with special reference to bacteremic pneumococcal pneumonia. Ann Intern Med. 1964;60:759–76.

    Article  CAS  PubMed  Google Scholar 

  52. Kislak JW, Razavi LM, Daly AK, et al. Susceptibility of pneumococci to nine antibiotics. Am J Med Sci. 1965;250:261–8.

    Article  CAS  PubMed  Google Scholar 

  53. Hansman D, Bullen MM. A resistant pneumococcus. Lancet. 1967;1:264–5.

    Article  Google Scholar 

  54. Hansman D, Glasgow H, Sturt J, et al. Increased resistance to penicillin of pneumococci isolated from man. N Engl J Med. 1971;284:175–7.

    Article  CAS  PubMed  Google Scholar 

  55. Naraqi S, Kirkpatrick GP, Kabins S. Relapsing pneumococcal meningitis: isolation of an organism with decreased susceptibility to penicillin G. J Pediatr. 1974;85:671–3.

    Article  CAS  PubMed  Google Scholar 

  56. Appelbaum PC, Bhamjee A, Scragg JN, et al. Streptococcus pneumoniae resistant to penicillin and chloramphenicol. Lancet. 1977;2:995–7.

    Article  CAS  PubMed  Google Scholar 

  57. Hakenbeck R, Ellerbrok H, Briese T, et al. Penicillin-binding proteins of penicillin-susceptible and -resistant pneumococci: immunological relatedness of altered proteins and changes in peptides carrying the (-lactam binding site. Antimicrob Agents Chemother. 1986;30:553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kell CM, Sharma UK, Dowson CG, et al. Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X of Streptococcus pneumoniae. FEMS Microbiol Lett. 1993;106:171–5.

    Article  CAS  PubMed  Google Scholar 

  59. Smith AM, Feldman C, Massidda O, et al. Altered PBP2A and its role in the development of penicillin, cefotaxime and ceftriaxone resistance in a clinical isolate of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2005;49:2002–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reichmann P, Kőning A, Marton A, et al. Penicillin-binding proteins as resistance determinants in clinical isolates of Streptococcus pneumoniae. Microb Drug Resist. 1996;2:177–81.

    Article  CAS  PubMed  Google Scholar 

  61. Hakenbeck R, Brückner R, Denapaite D, et al. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae . Future Microbiol. 2012;7:395–410.

    Article  CAS  PubMed  Google Scholar 

  62. Grebe T, Hakenbeck R. Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of β-lactam antibiotics. Antimicrob Agents Chemother. 1996;40:829–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dowson CG, Johnson AP, Cercenado E, et al. Genetics of oxacillin resistance in clinical isolates of Streptococcus pneumoniae that are oxacillin resistant and penicillin susceptible. Antimicrob Agents Chemother. 1994;38:49–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Munoz R, Dowson CG, Daniels M, et al. Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol Microbiol. 1992;6:2461–5.

    Article  CAS  PubMed  Google Scholar 

  65. Coffey TJ, Daniels M, McDougal LK, et al. Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins. Antimicrob Agents Chemother. 1995;39:1306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith AM, Klugman KP. Alterations in MurM, a cell wall muropeptide branching enzyme, increase high-level penicillin and cephalosporin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2001;45:2393–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vanhoof R, Brouillard J, Damee S, et al. High prevalence of penicillin resistance and comparative in vitro activity of various antibiotics in clinical isolates of Streptococcus pneumoniae isolated in the Province of Hainaut during winter 2004. Acta Clin Belg. 2005;60:345–9.

    Google Scholar 

  68. Cafini F, del Campo R, Alou L, et al. Alterations of the penicillin-binding proteins and murM alleles of clinical Streptococcus pneumoniae isolates with high-level resistance to amoxicillin in Spain. J Antimicrob Chemother. 2006;57:224–9.

    Article  CAS  PubMed  Google Scholar 

  69. Butler DL, Gagnon RC, Miller LA, et al. Differences between the activity of penicillin, amoxycillin, and co-amoxyclav against 5,252 Streptococcus pneumoniae isolates tested in the Alexander Project 1992–1996. J Antimicrob Chemother. 1999;43:777–82.

    Article  CAS  PubMed  Google Scholar 

  70. Schrag SJ, McGee L, Whitney CG, et al. Emergence of Streptococcus pneumoniae with very-high-level resistance to penicillin. Antimicrob Agents Chemother. 2004;48:3016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Doit C, Loukil C, Fitoussi F, et al. Emergence in France of multiple clones of clinical Streptococcus pneumoniae isolates with high-level resistance to amoxicillin. Antimicrob Agents Chemother. 1999;43:1480–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kosowska K, Jacobs MR, Bajaksouzian S, et al. Alterations of penicillin-binding proteins 1A, 2X and 2B in Streptococcus pneumoniae isolates with amoxicillin MICs are higher than penicillin MICs. Antimicrob Agents Chemother. 2004;48:4020–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Du Plessis M, Bingen E, Klugman KP. Analysis of penicillin-binding protein genes of clinical isolates of Streptococcus pneumoniae with reduced susceptibility to amoxicillin. Antimicrob Agents Chemother. 2002;46:2349–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gasc AM, Kauc L, Barraillé P, et al. Gene localization, size, and physical map of the chromosome of Streptococcus pneumoniae. J Bacteriol. 1991;173:7361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smith AM, Botha RF, Koornhof HJ, et al. Emergence of a pneumococcal clone with cephalosporin resistance and penicillin susceptibility. Antimicrob Agents Chemother. 2001;45:2648–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Davies TA, Flamm RK, Lynch AS. Activity of ceftobiprole against Streptococcus pneumoniae isolates exhibiting high-level resistance to ceftriaxone. Int J Antimicrob Agents. 2012;39:534–8.

    Article  CAS  PubMed  Google Scholar 

  77. Flamm RK, Sader HS, Farrell DJ, et al. Antimicrobial activity of ceftaroline tested against drug-resistant subsets of Streptococcus pneumoniae from U.S. medical centers. Antimicrob Agents Chemother. 2014;58:2468–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. McDougal LK, Rasheed JK, Biddle JW, et al. Identification of multiple clones of extended-spectrum cephalosporin-resistant Streptococcus pneumoniae isolates in the United States. Antimicrob Agents Chemother. 1995;39:2282–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Felmingham D, Reinert RR, Hirakata Y, et al. Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from the PROTEKT surveillance study, and comparative in vitro activity of the ketolide, telithromycin. J Antimicrob Chemother. 2002;50(Suppl S1):25–37.

    Article  CAS  PubMed  Google Scholar 

  80. Klugman KP, Lonks JR. Hidden epidemic of macrolide-resistant pneumococci. Emerg Infect Dis. 2005;11:802–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Felmingham D, Cantón R, Jenkins SG. Regional trends in beta-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001–2004. J Infect. 2007;55:111–8.

    Article  PubMed  Google Scholar 

  82. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995;39:577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Syrogiannopoulos GA, Grivea IN, Tait-Kamradt A, et al. Identification of an erm(A) erythromycin resistance methylase gene in Streptococcus pneumoniae isolated in Greece. Antimicrob Agents Chemother. 2001;45:342–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Farrell DJ, Douthwaite S, Morrissey I, et al. Macrolide resistance by ribosomal mutation in clinical isolates of Streptococcus pneumoniae from the PROTEKT 1999–2000 study. Antimicrob Agents Chemother. 2003;47:1777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Doktor SZ, Shortridge VD, Beyer JM, et al. Epidemiology of macrolide and/or lincosamide resistant Streptococcus pneumoniae clinical isolates with ribosomal mutations. Diagn Microbiol Infect Dis. 2004;49:47–52.

    Article  CAS  PubMed  Google Scholar 

  86. Davies TA, Bush K, Sahm D, et al. Predominance of 23S rRNA mutants among non-erm, non-mef macrolide-resistant clinical isolates of Streptococcus pneumoniae collected in the United States in 1999–2000. Antimicrob Agents Chemother. 2005;49:3031–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Farrell DJ, Jenkins SG. Distribution across the USA of macrolide resistance and macrolide resistance mechanisms among Streptococcus pneumoniae isolates collected from patients with respiratory tract infections: PROTEKT US 2001–2002. J Antimicrob Chemother. 2004;54(Suppl S1):17–22.

    Article  Google Scholar 

  88. Cochetti I, Vecchi M, Mingoia M, et al. Molecular characterization of pneumococci with efflux-mediated erythromycin resistance and identification of a novel mef gene subclass, mef(I). Antimicrob Agents Chemother. 2005;49:4999–5006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Santagati M, Iannelli F, Cascone C, et al. The novel conjugative transposon Tn1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microb Drug Resist. 2003;9:243–7.

    Article  CAS  PubMed  Google Scholar 

  90. Gay K, Stephens DS. Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in Streptococcus pneumoniae. J Infect Dis. 2001;184:56–65.

    Article  CAS  PubMed  Google Scholar 

  91. Mingoia M, Vecchi M, Cochetti I, et al. Composite structure of Streptococcus pneumoniae containing the erythromycin efflux resistance gene mef(I) and the chloramphenicol resistance gene catQ. Antimicrob Agents Chemother. 2007;51:3983–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McGee L, Klugman KP, Wasas A, et al. Serotype 19F multiresistant pneumococcal clone harboring two erythromycin resistance determinants (erm(B) and mef(A)) in South Africa. Antimicrob Agents Chemother. 2001;45:1595–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Farrell DJ, Jenkins SG, Brown SD, et al. Emergence and spread of Streptococcus pneumoniae with erm(B) and mef(A) resistance. Emerg Infect Dis. 2005;11:851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bowers JR, Driebe EM, Nibecker JL, et al. Dominance of multidrug resistant CC271 clones in macrolide-resistant Streptococcus pneumoniae in Arizona. BMC Microbiol. 2012;12:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Patel SN, McGeer A, Melano R, et al. Susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. Antimicrob Agents Chemother. 2011;55:3703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Simoens S, Verhaegen J, van Bleyenbergh P, et al. Consumption patterns and in vitro resistance of Streptococcus pneumoniae to fluoroquinolones. Antimicrob Agents Chemother. 2011;55:3051–3.

    Google Scholar 

  97. Fenoll A, Granizo JJ, Aguilar L, et al. Temporal trends of invasive Streptococcus pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to 2007. J Clin Microbiol. 2009;47:1012–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wolter N, du Plessis M, von Gottberg A, et al. Molecular characterization of emerging non-levofloxacin-susceptible pneumococci isolated from children in South Africa. J Clin Microbiol. 2009;47:1319–24.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ho PL, Yam WC, Cheung TK, et al. Fluoroquinolone resistance among Streptococcus pneumoniae in Hong Kong linked to the Spanish 23F clone. Emerg Infect Dis. 2001;7:906–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pan XS, Ambler J, Mehtar S, et al. Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1996;40:2321–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bast DJ, Low DE, Duncan CL, et al. Fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae: contributions of type II topoisomerase mutations and efflux to levels of resistance. Antimicrob Agents Chemother. 2000;44:3049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lim S, Bast D, McGeer A, et al. Antimicrobial susceptibility breakpoints and first-step parC mutations in Streptococcus pneumoniae: redefining fluoroquinolones resistance. Emerg Infect Dis. 2003;9:833–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li X, Zhao X, Drlica K. Selection of Streptococcus pneumoniae mutants having reduced susceptibility to moxifloxacin and levofloxacin. Antimicrob Agents Chemother. 2002;46:522–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gillespie SH, Voelker LL, Ambler JE, et al. Fluoroquinolone resistance in Streptococcus pneumoniae: evidence that gyrA mutations arise at a lower rate and that mutation in gyrA or parC predisposes to further mutation. Microb Drug Resist. 2003;9:17–24.

    Article  CAS  PubMed  Google Scholar 

  105. Perichon B, Tankovic J, Courvalin P. Characterization of a mutation in the pare gene that confers fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41:1166–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Weigel LM, Anderson GJ, Facklam RR, et al. Genetic analyses of mutations contributing to fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2001;45:3517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Duesberg CB, Welte T, Pletz MW. The Lys137Asn mutation as surrogate marker for developing fluoroquinolone resistance in Streptococcus pneumoniae. J Chemother. 2007;19:750–1.

    Article  CAS  PubMed  Google Scholar 

  108. Pletz MW, Fugit RV, McGee L, et al. Fluoroquinolone-resistant Streptococcus pneumoniae. Emerg Infect Dis. 2006;12:1462–3.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zeller V, Janoir C, Kitzis MD, et al. Active efflux as a mechanism of resistance to ciprofloxacin in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41:1973–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pletz MW, van der Linden M, von Baum H, et al. Low prevalence of fluoroquinolone resistant strains and resistance precursor strains in Streptococcus pneumoniae from patients with community-acquired pneumonia despite high fluoroquinolone usage. Int J Med Microbiol. 2011;301:53–7.

    Article  CAS  PubMed  Google Scholar 

  111. Andersen CL, Holland IB, Jacq A. Verapamil, a Ca2+ channel inhibitor acts as a local anesthetic and induces the sigma E dependent extra-cytoplasmic stress response in E. coli. Biochim Biophys Acta. 2006;1758:1587–95.

    Article  CAS  PubMed  Google Scholar 

  112. Pletz MW, Michaylov N, Schumacher U, et al. Antihypertensives suppress the emergence of fluoroquinolone-resistant mutants in pneumococci: an in vitro study. Int J Med Microbiol. 2013;303:176–81.

    Article  CAS  PubMed  Google Scholar 

  113. Janoir C, Podglajen I, Kitzis MD, et al. In vitro exchange of fluoroquinolone resistance determinants between Streptococcus pneumoniae and viridans streptococci and genomic organization of the parE-parC region in S. mitis. J Infect Dis. 1999;180:555–8.

    Article  CAS  PubMed  Google Scholar 

  114. Tankovic J, Perichon B, Duval J, et al. Contribution of mutations in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus pneumoniae obtained in vivo and in vitro. Antimicrob Agents Chemother. 1996;40:2505–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Martin-Galiano AJ, Balsalobre L, Fenoll A, et al. Genetic characterization of optochin-susceptible viridans group streptococci. Antimicrob Agents Chemother. 2003;47:3187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bast DJ, de Azavedo JC, Tam TY, et al. Interspecies recombination contributes minimally to fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2001;45:2631–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pletz MW, McGee L, Beall B, et al. Interspecies recombination in type II topoisomerase genes is not a major cause of fluoroquinolone resistance in invasive Streptococcus pneumoniae isolates in the United States. Antimicrob Agents Chemother. 2005;49:779–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Balsalobre L, Ferrandiz MJ, Linares J, et al. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae. Antimicrob Agents Chemother. 2003;47:2072–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pletz MW, McGee L, Jorgensen J, et al. Levofloxacin-resistant invasive Streptococcus pneumoniae in the United States: evidence for clonal spread and the impact of conjugate pneumococcal vaccine. Antimicrob Agents Chemother. 2004;48:3491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Canton R, Morosini M, Enright MC, et al. Worldwide incidence, molecular epidemiology and mutations implicated in fluoroquinolone-resistant Streptococcus pneumoniae: data from the global PROTEKT surveillance programme. J Antimicrob Chemother. 2003;52:944–52.

    Article  CAS  PubMed  Google Scholar 

  121. Hsueh PR, Teng LJ, Lee CM, et al. Telithromycin and quinupristine-dalfopristin resistance in clinical isolates of Streptococcus pyogenes: SMART Program 2001 Data. Antimicrob Agents Chemother. 2003;47:2152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Montanari MP, Tili E, Cochetti I, et al. Molecular characterization of clinical Streptococcus pneumoniae isolates with reduced susceptibility to fluoroquinolones emerging in Italy. Microb Drug Resist. 2004;10:209–17.

    Article  CAS  PubMed  Google Scholar 

  123. Lonks JR, Goldman DA. Telithromycin: a ketolide antibiotic for treatment of respiratory tract infections. Clin Infect Dis. 2005;40:1657–64.

    Article  CAS  PubMed  Google Scholar 

  124. McGhee P, Clark C, Kosowska-Shick KM, et al. In vitro activity of CEM-101 against Streptococcus pneumoniae and Streptococcus pyogenes with defined macrolide resistance mechanisms. Antimicrob Agents Chemother. 2010;54:230–8.

    Article  CAS  PubMed  Google Scholar 

  125. Wilson DN. On the specificity of antibiotics targeting the large ribosomal subunit. Ann NY Acad Sci. 2011;1241:1–16.

    Article  CAS  PubMed  Google Scholar 

  126. Patel SN, Pillai DR, Pong-Porter S, et al. In vitro activity of ceftaroline, ceftobiprole and cethromycin against clinical isolates of Streptococcus pneumoniae collected from across Canada between 2003 and 2008. J Antimicrob Chemother. 2009;64:659–60.

    Article  CAS  PubMed  Google Scholar 

  127. Leclercq R, Courvalin P. Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2002;46:2727–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Walsh F, Willcock J, Amyes S. High-level telithromycin resistance in laboratory-generated mutants of Streptococcus pneumoniae. J Antimicrob Chemother. 2003;52:345–53.

    Article  CAS  PubMed  Google Scholar 

  129. Farrell DJ, Morrissey I, Bakker S, et al. In vitro activities of telithromycin, linezolid, and quinupristin-dalfopristin against Streptococcus pneumoniae with macrolide resistance due to ribosomal mutations. Antimicrob Agents Chemother. 2004;48:3169–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Reinert RR, van der Linden M, Al-Lahham A. Molecular characterization of the first telithromycin-resistant Streptococcus pneumoniae isolate in Germany. Antimicrob Agents Chemother. 2005;49:3520–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tait-Kamradt A, Davies T, Appelbaum PC, et al. Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother. 2000;44:3395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Faccone D, Andres P, Galas M, et al. Emergence of a Streptococcus pneumoniae clinical isolate highly resistant to telithromycin and fluoroquinolones. J Clin Microbiol. 2005;43:5800–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pérez-Trallero E, Marimon JM, Iglesias L, et al. Fluoroquinolone and macrolide treatment failure in pneumococcal pneumonia and selection of multidrug-resistant isolates. Emerg Infect Dis. 2003;9:1159–62.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wolter N, Smith AM, Low DE, et al. High-level telithromycin resistance in a clinical isolate of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2007;51:1092–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Draghi DC, Sheehan DJ, Hogan P, et al. In vitro activity of linezolid against key Gram-positive organisms isolated in the United States: results of the LEADER 2004 surveillance program. Antimicrob Agents Chemother. 2005;49:5024–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Flamm RK, Mendes RE, Ross JE, et al. An international activity and spectrum analysis of linezolid: ZAAPS Program results for 2011. Diagn Microbiol Infect Dis. 2013;76:206–13.

    Article  CAS  PubMed  Google Scholar 

  137. Flamm RK, Mendes RE, Ross JE, et al. Linezolid surveillance results for the United States: LEADER surveillance program 2011. Antimicrob Agents Chemother. 2013;57:1077–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Meka VG, Gold HS. Antimicrobial resistance to linezolid. Clin Infect Dis. 2004;39:1010–5.

    Article  CAS  PubMed  Google Scholar 

  139. Wolter N, Smith AM, Farrell DJ, et al. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents Chemother. 2005;49:3554–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dong W, Chochua S, McGee L, et al. Mutations within the rplD gene of linezolid nonsusceptible Streptococcus pneumoniae strains isolated in the USA. Antimicrob Agents Chemother. 2014;58:2459–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Feng J, Lupien A, Gingras H, et al. Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Genome Res. 2009;19:1214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Feng J, Billal DS, Lupien A, et al. Proteomic and transcriptomic analysis of linezolid resistance in Streptococcus pneumoniae. J Proteome Res. 2011;10:4439–52.

    Article  CAS  PubMed  Google Scholar 

  143. Kisgen JJ, Mansour H, Unger NR, et al. Tedizolid: a new oxazolidinone antimicrobial. Am J Health Syst Pharm. 2014;71:621–33.

    Article  CAS  PubMed  Google Scholar 

  144. Jones RN, Farrell DJ, Morrissey I. Quinupristin-dalfopristin resistance in Streptococcus pneumoniae: novel L22 ribosomal protein mutation in two clinical isolates from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2003;47:2696–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wyres KL, van Tonder A, Lambertsen LM, et al. Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974. BMC Genomics. 2013;14:500.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Burdett V, Inamine J, Rajagopalan S. Heterogeneity of tetracycline resistance determinants in Streptococcus. J Bacteriol. 1982;149:995–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Widdowson CA, Klugman KP, Hanslo D. Identification of the tetracycline resistance gene, tet(O), in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1996;40:2891–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Oggioni MR, Dowson CG, Smith JM, et al. The tetracycline resistance gene tet(M) exhibits mosaic structure. Plasmid. 1996;35:156–63.

    Article  CAS  PubMed  Google Scholar 

  149. Doherty N, Trzcinski K, Pickerill P, et al. Genetic diversity of the tet(M) gene in tetracycline-resistant clonal lineages of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2000;44:2979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dzierzanowska-Fangrat K, Semczuk K, Gorska P, et al. Evidence for tetracycline resistance determinant tet(M) allele replacement in a Streptococcus pneumoniae population of limited geographical origin. Int J Antimicrob Agents. 2006;27:159–64.

    Article  CAS  PubMed  Google Scholar 

  151. Doern GV, Brueggemann A, Holley Jr HP, et al. Antimicrobial resistance of Streptococcus pneumoniae recovered from outpatients in the United States during the winter months of 1994–1995: results of a 30-center national surveillance study. Antimicrob Agents Chemother. 1996;40:1208–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Marchese A, Mannelli S, Tonoli E, et al. Prevalence of antimicrobial resistance in Streptococcus pneumoniae circulating in Italy: results of the Italian Epidemiological Observatory Survey (1997–1999). Microb Drug Resist. 2001;7:277–87.

    Article  CAS  PubMed  Google Scholar 

  153. Padayachee T, Klugman KP. Molecular basis of rifampin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1999;43:2361–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ferrandiz MJ, Ardanuy C, Linares J, et al. New mutations and horizontal transfer of rpoB among rifampin-resistant Streptococcus pneumoniae from four Spanish hospitals. Antimicrob Agents Chemother. 2005;49:2237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ayoubi P, Kilic AO, Vijayakumar MN. Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol. 1991;173:1617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Widdowson CA, Adrian PV, Klugman KP. Acquisition of chloramphenicol resistance by the linearization and integration of the entire staphylococcal plasmid pC194 into the chromosome of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2000;44:393–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jones ME, Blosser-Middleton RS, Critchley IA, et al. In vitro susceptibility of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis: a European multicenter study during 2000–2001. Clin Microbiol Infect. 2003;9:590–9.

    Article  CAS  PubMed  Google Scholar 

  158. Johnson DM, Stilwell MG, Fritsche TR, et al. Emergence of multidrug-resistant Streptococcus pneumoniae: report from the SENTRY Antimicrobial Surveillance Program (1999–2003). Diagn Microbiol Infect Dis. 2006;56:69–74.

    Article  PubMed  Google Scholar 

  159. Adrian PV, Klugman KP. Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41:2406–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Maskell JP, Sefton AM, Hall LM. Multiple mutations modulate the function of dihydrofolate reductase in trimethoprim-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother. 2001;45:1104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lopez P, Espinosa M, Greenberg B, et al. Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme. J Bacteriol. 1987;169:4320–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Maskell JP, Sefton AM, Hall LM. Mechanism of sulfonamide resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41:2121–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Padayachee T, Klugman KP. Novel expansions of the gene encoding dihydropteroate synthase in trimethoprim-sulfamethoxazole-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother. 1999;43:2225–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Feldman C, Kallenbach JM, Miller SD, et al. Community-acquired pneumonia due to penicillin-resistant pneumococci. N Engl J Med. 1985;313:615–7.

    Article  CAS  PubMed  Google Scholar 

  165. Pallares R, Gudiol F, Linares J, et al. Risk factors and response to antibiotic therapy in adults with bacteremic pneumonia caused by penicillin-resistant pneumococci. N Engl J Med. 1987;317:18–22.

    Article  CAS  PubMed  Google Scholar 

  166. Bryan CS, Talwani R, Stinson MS. Penicillin dosing for pneumococcal pneumonia. Chest. 1997;112:1657–64.

    Article  CAS  PubMed  Google Scholar 

  167. Kaplan SL, Mason Jr EO, Barson WJ, et al. Outcome of invasive infections outside the central nervous system caused by Streptococcus pneumoniae isolates nonsusceptible to ceftriazone in children treated with beta-lactam antibiotics. Pediatr Infect Dis J. 2001;20:392–6.

    Article  CAS  PubMed  Google Scholar 

  168. Pallares R, Capdevila O, Linares J, et al. The effect of cephalosporin resistance on mortality in adult patients with nonmeningeal systemic pneumococcal infections. Am J Med. 2002;113:120–6.

    Article  CAS  PubMed  Google Scholar 

  169. Yu VL, Chiou CC, Feldman C, et al. An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered, and clinical outcome. Clin Infect Dis. 2003;37:230–7.

    Article  CAS  PubMed  Google Scholar 

  170. Daum RS, Nachman JP, Leitch CD, et al. Nosocomial epiglottitis associated with penicillin- and cephalosporin-resistant Streptococcus pneumoniae bacteremia. J Clin Microbiol. 1994;32:246–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Dagan R, Leibovitz E, Fliss DM, et al. Bacteriologic efficacies of oral azithromycin and oral cefaclor in treatment of acute otitis media in infants and young children. Antimicrob Agents Chemother. 2000;44:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dagan R, Leibovitz E. Bacterial eradication in the treatment of otitis media. Lancet Infect Dis. 2002;2:593–604.

    Article  PubMed  Google Scholar 

  173. Dagan R, Hoberman A, Johnson C, et al. Bacteriologic and clinical efficacy of high dose amoxicillin/clavulanate in children with acute otitis media. Pediatr Infect Dis J. 2001;20:829–37.

    Article  CAS  PubMed  Google Scholar 

  174. Brook I, Gooch WMI, et al. Medical management of acute bacterial sinusitis. Recommendations of a clinical advisory committee on pediatric and adult sinusitis. Ann Otol Rhinol Laryngol. 2000;109:2–20.

    Google Scholar 

  175. Friedland IR, Klugman KP. Failure of chloramphenicol therapy in penicillin-resistant pneumococcal meningitis. Lancet. 1992;339:405–8.

    Article  CAS  PubMed  Google Scholar 

  176. Klugman KP, Walsh AL, Phiri A, et al. Mortality in penicillin-resistant pneumococcal meningitis. Pediatr Infect Dis J. 2008;27:671–2.

    Article  PubMed  Google Scholar 

  177. Bradley JS, Connor JD. Ceftriaxone failure in meningitis caused by Streptococcus pneumoniae with reduced susceptibility to beta-lactam antibiotics. Pediatr Infect Dis J. 1991;10:871–3.

    Article  CAS  PubMed  Google Scholar 

  178. Klugman KP. Pneumococcal resistance to the third-generation cephalosporins: clinical, laboratory and molecular aspects. Int J Antimicrob Agents. 1994;4:63–7.

    Article  CAS  PubMed  Google Scholar 

  179. Klugman KP, Friedland IR, Bradley JS. Bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in cerebrospinal fluid of children with acute bacterial meningitis. Antimicrob Agents Chemother. 1995;39:1988–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Friedland IR, Klugman KP. Cerebrospinal fluid bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in children with meningitis treated with high-dosage cefotaxime. Antimicrob Agents Chemother. 1997;41:1888–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Musher DM, Dowell ME, Shortridge VD, et al. Emergence of macrolide resistance during treatment of pneumococcal pneumonia. N Engl J Med. 2002;346:630–1.

    Article  PubMed  Google Scholar 

  182. Daneman N, McGeer A, Green K, et al. Macrolide resistance in bacteremic pneumococcal disease: implications for patient management. Clin Infect Dis. 2006;43(4):432–8.

    Article  CAS  PubMed  Google Scholar 

  183. Lonks JR, Garau J, Gomez L, et al. Failure of macrolide antibiotic treatment in patients with bacteremia due to erythromycin-resistant Streptococcus pneumoniae. Clin Infect Dis. 2002;35:556–64.

    Article  CAS  PubMed  Google Scholar 

  184. Jacobs MR, Bajaksouzian S, Windau A, et al. Susceptibility of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis to 17 oral antimicrobial agents based on pharmacodynamic parameters: 1998–2001 U S Surveillance Study. Clin Lab Med. 2004;24:503–30.

    Article  PubMed  Google Scholar 

  185. Leiberman A, Leibovitz E, Piglansky L, et al. Bacteriologic and clinical efficacy of trimethoprim-sulfamethoxazole for treatment of acute otitis media. Pediatr Infect Dis J. 2001;20:260–4.

    Article  CAS  PubMed  Google Scholar 

  186. Davidson R, Cavalcanti R, Brunton JL, et al. Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N Engl J Med. 2002;346:747–50.

    Article  PubMed  Google Scholar 

  187. Anderson KB, Tan JS, File Jr TM, et al. Emergence of levofloxacin-resistant pneumococci in immunocompromised adults after therapy for community-acquired pneumonia. Clin Infect Dis. 2003;37:376–81.

    Article  PubMed  Google Scholar 

  188. Whitney CG, Farley MM, Hadler J, et al. Decline in invasive pneumococcal disease after the introduction of protein–polysaccharide conjugate vaccine. N Engl J Med. 2003;348:1737–46.

    Article  PubMed  Google Scholar 

  189. Pilishvili T, Lexau C, Farley MM, et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis. 2010;201(1):32–41.

    Article  PubMed  Google Scholar 

  190. Klugman KP, Madhi SA, Huebner RE, et al. A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med. 2003;349:1341–8.

    Article  CAS  PubMed  Google Scholar 

  191. Kyaw MH, Lynfield R, Schaffner W, et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med. 2006;354:1455–63.

    Article  CAS  PubMed  Google Scholar 

  192. Pichichero ME, Casey JR. Emergence of a multiresistant serotype 19A pneumococcal strain not included in the 7-valent conjugate vaccine as an otopathogen in children. J Am Med Assoc. 2007;298(15):1772–8.

    Article  CAS  Google Scholar 

  193. Moore MR, Gertz Jr RE, Woodbury RL, et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis. 2008;197(7):1016–27.

    Article  PubMed  Google Scholar 

  194. Hicks LA, Chien YW, Taylor Jr TH, et al. Outpatient antibiotic prescribing and nonsusceptible Streptococcus pneumoniae in the United States, 1996–2003. Clin Infect Dis. 2011;53(7):631–9.

    Article  PubMed  Google Scholar 

  195. Fireman B, Black SB, Shinefield HR, et al. Impact of the pneumococcal conjugate vaccine on otitis media. Pediatr Infect Dis J. 2003;22(1):10–6.

    Article  PubMed  Google Scholar 

  196. Dagan R, Sikuler-Cohen M, Zamir O, et al. Effect of a conjugate pneumococcal vaccine on the occurrence of respiratory infections and antibiotic use in day-care center attendees. Pediatr Infect Dis J. 2001;20(10):951–8.

    Article  CAS  PubMed  Google Scholar 

  197. Palmu AA, Jokinen J, Nieminen H, et al. Effect of pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) on outpatient antimicrobial purchases: a double-blind, cluster randomised phase 3-4 trial. Lancet Infect Dis. 2014;14:205–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley McGee Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

McGee, L., Klugman, K.P. (2017). Resistance in Streptococcus pneumoniae . In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_1

Download citation

Publish with us

Policies and ethics