Skip to main content

Energy Efficient Absorbents for Industry Promising Carbon Dioxide Capture

  • Chapter
  • First Online:
Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Part of the book series: Green Energy and Technology ((GREEN))

  • 1464 Accesses

Abstract

There are growing concerns that carbon dioxide (CO2) emissions are contributing to global climate change. CO2 capture and sequestration system is an effective way to alleviate this phenomenon. Chemical absorption of CO2 is a mature and efficient way to capture CO2 from industrial flue gas. Amines are the most commonly discussed solvent, such as NH3 as inorganic solvent and monoethanolamine (MEA) as the typical alkanolamine. MEA aqueous solutions have been widely analyzed and achieved good performance. However, the energy cost for the amine regeneration remains great which barricades its widely industrial application. Several energy efficient absorbents are currently discussed from the perspective of the reaction kinetics, desorption efficiency and sensible heat consumption. These discussions show that the absorbents with higher reaction rate and mass transfer coefficient and advanced process can reduce the sensible heat (less consumption of absorbent) and reaction heat, which thus make them as the energy efficient absorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C :

Concentration of the amine, kmol/m3

D, D m :

Diffusion coefficient, m2/s

G :

Inert gas flow rate, kmol/m2/s

H :

Henry’s constant, MPa m3/kmol

H S :

Henry’s constant of the solvent, MPa m3/kmol

h :

Van Krevelen coefficient, m3/kmol

I :

Ionic strength of the solution, kmol/m3

k :

Reaction rate constant, m3/kmol/s

k m :

Reaction kinetics, dimensionless

K G a V :

Overall mass transfer coefficient, kmol/m2/s/MPa

MSN :

Molecular synergy number, dimensionless

P :

Operating pressure, MPa

Re :

Reynolds number, dimensionless

R:

Gas constant, 8.314 J/mol/K

T :

Temperature, K

t :

Time, s

yA,G :

Gas phase concentration, mol/mol

YA,G :

Mole ratio value

Z:

Column height, m

\(\upalpha\) :

Conversion rate, dimensionless

References

  1. Mathias PM, Zheng F, Heldebrant DJ, Zwoster A, Whyatt G, Freeman CM et al (2015) Measuring the absorption rate of CO2 in nonaqueous CO2-binding organic liquid solvents with a wetted-wall apparatus. Chem Sus Chem 8:3617–3625

    Article  Google Scholar 

  2. Walters MS, Edgar TF, Rochelle GT (2016) Regulatory control of amine scrubbing for CO2 capture from power plants. Ind Eng Chem Res 55:4646–4657

    Article  Google Scholar 

  3. Singto S, Supap T, Idem R, Tontiwachwuthikul P, Tantayanon S, Al-Marri MJ et al (2016) Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Sep Purif Technol 167:97–107

    Article  Google Scholar 

  4. Abu-Zahra MR, Abbas Z, Singh P, Feron P (2013) Carbon dioxide post-combustion capture: solvent technologies overview, status and future directions. Materials and processes for energy: communicating current research and technological developments. Formatex Research Center, Badajoz, pp 923–34

    Google Scholar 

  5. Chakravarty T, Phukan U, Weilund R (1985) Reaction of acid gases with mixtures of amines. Chem Eng Prog (U.S) 81:32–36

    Google Scholar 

  6. Budzianowski WM (2015) Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review. Int J Glob Warming 7:184–225

    Article  Google Scholar 

  7. Crooks JE, Donnellan JP (1990) Kinetics of the reaction between carbon dioxide and tertiary amines. J Organic Chem 55:1372–1374

    Article  Google Scholar 

  8. Li M-H, Chang B-C (1994) Solubilities of carbon dioxide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol. J Chem Eng Data 39:448–452

    Article  Google Scholar 

  9. Versteeg G, Van Dijck L, Van Swaaij W (1996) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chem Eng Commun 144:113–158

    Article  Google Scholar 

  10. Versteeg G, Van Swaaij W (1988) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions—I. Primary and secondary amines. Chem Eng Sci 43:573–585

    Article  Google Scholar 

  11. Bosch H, Versteeg G, Van Swaaij W (1990) Kinetics of the reaction of CO2 with the sterically hindered amine 2-amino-2-methylpropanol at 298 K. Chem Eng Sci 45:1167–1173

    Article  Google Scholar 

  12. Xu S, Wang Y-W, Otto FD, Mather AE (1996) Kinetics of the reaction of carbon dioxide with 2-amino-2-methyl-1-propanol solutions. Chem Eng Sci 51:841–850

    Article  Google Scholar 

  13. Rangwala H, Morrell B, Mather A, Otto F (1992) Absorption of CO2 into aqueous tertiary amine/MEA solutions. Can J Chem Eng 70:482–490

    Article  Google Scholar 

  14. Donaldson TL, Nguyen YN (1980) Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Ind Eng Chem Fundam 19:260–266

    Article  Google Scholar 

  15. Dash SK, Samanta AN, Bandyopadhyay SS (2014) Simulation and parametric study of post combustion CO2 capture process using (AMP + PZ) blended solvent. Int J Greenhouse Gas Control 21:130–139

    Article  Google Scholar 

  16. Li H, Le Moullec Y, Lu J, Chen J, Marcos JCV, Chen G (2014) Solubility and energy analysis for CO2 absorption in piperazine derivatives and their mixtures. Int J Greenhouse Gas Control 31:25–32

    Article  Google Scholar 

  17. Smith K, Lee A, Mumford K, Li S, Thanumurthy N, Temple N et al (2015) Pilot plant results for a precipitating potassium carbonate solvent absorption process promoted with glycine for enhanced CO2 capture. Fuel Process Technol 135:60–65

    Article  Google Scholar 

  18. Xiao J, Li C-W, Li M-H (2000) Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol+ monoethanolamine. Chem Eng Sci 55:161–175

    Article  Google Scholar 

  19. Aroonwilas A, Veawab A (2004) Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column. Ind Eng Chem Res 43:2228–2237

    Article  Google Scholar 

  20. Al-Juaied M, Rochelle GT (2006) Absorption of CO2 in aqueous diglycolamine. Ind Eng Chem Res 45:2473–2482

    Article  Google Scholar 

  21. Bishnoi S, Rochelle GT (2002) Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. AIChE J 48:2788–2799

    Article  Google Scholar 

  22. Choi SY, Nam SC, Yoon YI, Park KT, Park S-J (2014) Carbon Dioxide Absorption into Aqueous Blends of Methyldiethanolamine (MDEA) and alkyl amines containing multiple amino groups. Ind Eng Chem Res 53:14451–14461

    Article  Google Scholar 

  23. Zhang X, Zhang C-F, Qin S-J, Zheng Z-S (2001) A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of methyldiethanolamine and piperazine. Ind Eng Chem Res 40:3785–3791

    Article  Google Scholar 

  24. Zoghi AT, Feyzi F, Zarrinpashneh S (2012) Experimental investigation on the effect of addition of amine activators to aqueous solutions of N-methyldiethanolamine on the rate of carbon dioxide absorption. Int J Greenhouse Gas Control 7:12–19

    Article  Google Scholar 

  25. Adeosun A, Abu-Zahra MR (2013) Evaluation of amine-blend solvent systems for CO2 post-combustion capture applications. Energy Procedia. 37:211–218

    Article  Google Scholar 

  26. Huang Y, Zhang X, Zhang X, Dong H, Zhang S (2014) Thermodynamic modeling and assessment of ionic liquid-based CO2 capture processes. Ind Eng Chem Res 53:11805–11817

    Article  Google Scholar 

  27. Mumford KA, Smith KH, Anderson CJ, Shen S, Tao W, Suryaputradinata YA et al (2011) Post-combustion capture of CO2: results from the solvent absorption capture plant at Hazelwood power station using potassium carbonate solvent. Energy Fuels 26:138–146

    Article  Google Scholar 

  28. Thee H, Nicholas NJ, Smith KH, da Silva G, Kentish SE, Stevens GW (2014) A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: Glycine, sarcosine and proline. Int J Greenhouse Gas Control 20:212–222

    Article  Google Scholar 

  29. Yu Y, Lu H, Wang G, Zhang Z, Rudolph V (2013) Characterizing the Transport Properties of Multiamine Solutions for CO2 Capture by Molecular Dynamics Simulation. J Chem Eng Data 58:1429–1439

    Article  Google Scholar 

  30. Beyad Y, Puxty G, Wei S, Yang N, Xu D, Maeder M, et al (2014) An SO2 tolerant process for CO2 capture|NOVA. The University of Newcastle’s Digital Repository

    Google Scholar 

  31. Budzianowski WM (2011) Mitigating NH3 vaporization from an aqueous ammonia process for CO2 capture. Int J Chem Reactor Eng 9:1–27

    Article  Google Scholar 

  32. Cousins A, Wardhaugh LT, Feron PH (2011) Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. Chem Eng Res Des 89:1237–1251

    Article  Google Scholar 

  33. Yu Y, Lu H, Zhang T, Zhang Z, Wang G, Rudolph V (2013) Determining the performance of an efficient nonaqueous CO2 capture process at desorption temperatures below 373 K. Ind Eng Chem Res 52:12622–12634

    Article  Google Scholar 

  34. Park S-W, Choi B-S, Lee J-W (2006) Chemical absorption of carbon dioxide with triethanolamine in non-aqueous solutions. Korean J Chem Eng 23:138–143

    Article  Google Scholar 

  35. Chen S, Chen S, Zhang Y, Qin L, Guo C, Chen J (2016) Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions. Int J Greenhouse Gas Control 47:151–158

    Article  Google Scholar 

  36. Guo C, Chen S, Zhang Y, Wang G (2014) Solubility of CO2 in Nonaqueous Absorption System of 2-(2-Aminoethylamine) ethanol+ Benzyl Alcohol. J Chem Eng Data 59:1796–1801

    Article  Google Scholar 

  37. Park S-W, Lee J-W, Choi B-S, Lee J-W (2005) Kinetics of absorption of carbon dioxide in monoethanolamine solutions of polar organic solvents. J Ind Eng Chem 11:202–209

    Google Scholar 

  38. Da Silva EF, Svendsen HF (2007) Computational chemistry study of reactions, equilibrium and kinetics of chemical CO2 absorption. Int J Greenhouse Gas Control 1:151–157

    Article  Google Scholar 

  39. Zhang T, Zhang Z (2014) Computational study of CO2 absorption in Aqueous and non-aqueous solutions using MEA. Energy Procedia. 63:1347–1353

    Article  Google Scholar 

  40. Naami A, Edali M, Sema T, Idem R, Tontiwachwuthikul P (2012) Mass transfer performance of CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol, monoethanolamine, and N-methyldiethanolamine. Ind Eng Chem Res 51:6470–6479

    Article  Google Scholar 

  41. Sema T, Naami A, Fu K, Edali M, Liu H, Shi H et al (2012) Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA–MEA. Chem Eng J 209:501–512

    Article  Google Scholar 

  42. Li J, You C, Chen L, Ye Y, Qi Z, Sundmacher K (2012) Dynamics of CO2 absorption and desorption processes in alkanolamine with cosolvent polyethylene glycol. Ind Eng Chem Res 51:12081–12088

    Article  Google Scholar 

  43. Tan J, Shao H, Xu J, Du L, Luo G (2011) Mixture absorption system of monoethanolamine− triethylene glycol for CO2 capture. Ind Eng Chem Res 50:3966–3976

    Article  Google Scholar 

  44. Zheng C, Tan J, Wang Y, Luo G (2012) CO2 Solubility in a mixture absorption system of 2-Amino-2-methyl-1-propanol with Glycol. Ind Eng Chem Res 51:11236–11244

    Article  Google Scholar 

  45. Galvão AC, Francesconi AZ (2010) Solubility of methane and carbon dioxide in ethylene glycol at pressures up to 14 MPa and temperatures ranging from (303 to 423) K. J Chem Thermodyn 42:684–688

    Article  Google Scholar 

  46. Gui X, Tang Z, Fei W (2011) Solubility of CO2 in alcohols, glycols, ethers, and ketones at high pressures from (288.15 to 318.15) K. J Chem Eng Data 56:2420–2429

    Article  Google Scholar 

  47. W-m Qian, Y-g Li, Mather AE (1995) Correlation and prediction of the solubility of CO2 and H2S in an aqueous solution of methyldiethanolamine and sulfolane. Ind Eng Chem Res 34:2545–2550

    Article  Google Scholar 

  48. Yu YS, Zhang TT, Wu XM, Mu DL, Zhang ZX, Wang GGX (2015) Exploiting an alternative CO2 absorption process by efficient solvent mixture. Ind Eng Chem Res 54:6165–6174

    Article  Google Scholar 

  49. Derks P, Versteeg G (2009) Kinetics of absorption of carbon dioxide in aqueous ammonia solutions. Energy Procedia. 1:1139–1146

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of National Natural Science Foundation of China (no. 51276141) is gratefully acknowledged. This work is also supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JQ5192) and “Fundamental Research Funds for the Central Universities”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, Y.S., Zhang, T.T., Zhang, Z.X. (2017). Energy Efficient Absorbents for Industry Promising Carbon Dioxide Capture. In: Budzianowski, W. (eds) Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47262-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47262-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47261-4

  • Online ISBN: 978-3-319-47262-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics