Skip to main content

Implementing and Simulating an ALLIANCE-Based Multi-robot Task Allocation Architecture Using ROS

  • Conference paper
  • First Online:
Robotics (SBR 2016, LARS 2016)

Abstract

In this chapter, we discuss the implementation and simulation results of a ALLIANCE-based architecture on Robot Operating System (ROS). In this approach, the system parameters were set empirically and we do not discuss system performance metrics. The focus is implementing the task allocation algorithm. After briefly review MRTA problem, we compare known architectures in some key aspects. Although only simulations validate the ALLIANCE-based approach, system flexibility and adaptivity is notable despite its runs variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    But if there is a fault, e.g., a robot suddenly turns off; the team must be able to reassign tasks to complete the mission.

  2. 2.

    In this chapter, since all experiments are simulated, this probability is equal to 1. Even if sensors and robot models includes deviation errors, they never fail completely. But, the architecture covers the real robot case.

  3. 3.

    For the simulated experiments, robots previously know map limits and each of which initial position.

  4. 4.

    Sensors models in the simulator include a standard deviation error.

References

  1. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  2. Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: antecedents and directions. In: Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 1995, Human Robot Interaction and Cooperative Robots, vol. 1, pp. 226–234. IEEE (1995)

    Google Scholar 

  3. Badreldin, M., Hussein, A., Khamis, A.: A comparative study between optimization and market-based approaches to multi-robot task allocation. Adv. Artif. Intell. 2013, 12 (2013)

    Article  Google Scholar 

  4. Yliniemi, L., Agogino, A.K., Tumer, K.: Multirobot coordination for space exploration. AI Mag. - Am. Assoc. Artif. Intell. 35(4), 61–74 (2014)

    Google Scholar 

  5. Das, G.P., McGinnity, T.M., Coleman, S.A., Behera, L.: A distributed task allocation algorithm for a multi-robot system in healthcare facilities. J. Intell. Robotic Syst. 80(1), 33–58 (2015)

    Article  Google Scholar 

  6. Parker, L.E.: ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  7. Parker, L.E.: On the design of behavior-based multi-robot teams. J. Adv. Robot. 10(6), 547–578 (1995)

    Article  Google Scholar 

  8. Parker, L.E.: Multiple mobile robot systems. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 921–941. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Bastos, G.S., Ribeiro, C.H.C., de Souza, L.E.: Variable utility in multi-robot task allocation systems. In: IEEE Latin American Robotic Symposium, LARS 2008, pp. 179–183. IEEE (2008)

    Google Scholar 

  10. Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013)

    Article  Google Scholar 

  11. Østergård, E.H., Matarić, M.J., Sukhatme, G.S.: Distributed multi-robot task allocation for emergency handling. In: IEEE/RSJ International Conference on Proceedings of Intelligent Robots and Systems, 2001, vol. 2, pp. 821–826. IEEE (2001)

    Google Scholar 

  12. Gerkey, B.P., Matarić, M.J.: Sold!: Auction methods for multirobot coordination. Int. J. Robot. Autom. 18(5), 758–768 (2002)

    Google Scholar 

  13. Botelho, S.C., Alami, R.: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1234–1239. IEEE (1999)

    Google Scholar 

  14. Chaimowicz, L., Campos, M.F., Kumar, V.: Dynamic role assignment for cooperative robots. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 1, pp. 293–298. IEEE (2002)

    Google Scholar 

  15. Gerkey, B., Matarić, M.J.: Are (explicit) multi-robot coordination and multi-agent coordination really so different. In: Proceedings of the AAAI Spring Symposium on Bridging the Multi-agent and Multi-robotic Research Gap, pp. 1–3 (2004)

    Google Scholar 

  16. Parker, L.E.: L-ALLIANCE: task-oriented multi-robot learning in behavior-based systems. J. Adv. Robot. 11(4), 305–322 (1996)

    Article  Google Scholar 

  17. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3 (2009)

    Google Scholar 

  18. Kerr, J., Nickels, K.: Robot operating systems: bridging the gap between human and robot. In: 44th Southeastern Symposium on System Theory (SSST 2012), pp. 99–104. IEEE (2012)

    Google Scholar 

  19. Adept Mobile Robots: Mobilesim simulator. Accessed 25 June 2015

    Google Scholar 

  20. ROS Wiki: Rosaria package summary. Accessed 15 July 2015

    Google Scholar 

  21. Machado Santos, J., Portugal, D., Rocha, R.P.: An evaluation of 2D SLAM techniques available in robot operating system. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR 2013), pp. 1–6. IEEE (2013)

    Google Scholar 

  22. Zaman, S., Slany, W., Steinbauer, G.: ROS-based mapping, localization and autonomous navigation using a pioneer 3-dx robot and their relevant issues. In: Saudi International Electronics, Communications and Photonics Conference (SIECPC 2011), pp. 1–5. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace Pereira Neves dos Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

dos Reis, W.P.N., Bastos, G.S. (2016). Implementing and Simulating an ALLIANCE-Based Multi-robot Task Allocation Architecture Using ROS. In: Santos Osório, F., Sales Gonçalves, R. (eds) Robotics. SBR LARS 2016 2016. Communications in Computer and Information Science, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-319-47247-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47247-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47246-1

  • Online ISBN: 978-3-319-47247-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics