Skip to main content

Immune System Fundamentals

  • Chapter
  • First Online:
Machine Learning Paradigms

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 118))

  • 2246 Accesses

Abstract

We analyze the biological background of Artificial Immune Systems, namely the physiology of the immune system of vertebrate organisms. The relevant literature review outlines the major components and the fundamental principles governing the operation of the adaptive immune system, with emphasis on those characteristics of the adaptive immune system that are of particular interest from a computation point of view. The fundamental principles of the adaptive immune system are given by the following theories:

  • Immune Network Theory,

  • Clonal Selection Theory, and

  • Negative Selection Theory,

which are briefly analyzed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, D.: Timing, genetic requirements and functional consequences of somatic hypermutation during b-cell development. Immunol. Rev. 96, 5–22 (1987)

    Article  Google Scholar 

  2. Attwood, T.K., Parry-Smith, D.J.: Introduction to Bioinformatics. Prentice Hall, London (1999)

    Google Scholar 

  3. Burnet, F.M.: The Clonal Selection Theory of Immunity. Assoviative Neural Memories: Theory and Implemenations. Cambridge University Press, London (1959)

    Google Scholar 

  4. Cohen, J.J.: Apoptosis. Immunol. Today 14(3), 126–130 (1993)

    Article  Google Scholar 

  5. Darwin, C.: On the Origin of Species By Means of Natural Selection, 6th edn. (1859). www.literature.org/authors/darwin

  6. East, I.J., Todd, P.E., Leach, S.: Original antigenic sin: experiments with a defined antigen. Molecul. Boiol. 17, 1539–1544 (1980)

    Google Scholar 

  7. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Physica 22D, 187–204 (1986)

    MathSciNet  Google Scholar 

  8. Frank, S.A.: The design of natural and artificial adaptive systems (1996)

    Google Scholar 

  9. George, A.J.T., Gray, D.: Timing, genetic requirements and functional consequences of somatic hypermutation during b-cell development. Immunol. Today 20(4), 196–196 (1999)

    Article  Google Scholar 

  10. Gibert, C.J., Gibert, T.W.: Associative memory in an immune-based system. In: AAAI 1994: Proceedings of the Twelfth National Conference on Artificial intelligence, vol. 2, pp. 852–857. American Association for Artificial Intelligence, Menlo Park (1994)

    Google Scholar 

  11. Hood, L.E., Weissman, I.L., Wood, W.B., Wilson, J.H.: Immunology, 2nd edn. The Benjamin/Cummings Publishing Company, Menlo Park (1984)

    Google Scholar 

  12. Inman, J.K.: The antibody combining region: speculations on the hypothesis of general multispecificity. In: Theoretical Immunology, pp. 243–278 (1978)

    Google Scholar 

  13. Jerne, N.K.: The immune system. Sci. Am. 229(1), 52–60 (1973)

    Article  Google Scholar 

  14. Jerne, N.K.: Towards a network theory of the immune system. Annales d’immunologie 125C(1–2), 373–389 (1974)

    Google Scholar 

  15. Jerne, N.K.: The genetic grammar of the immune system. EMBO J. 4(4), 847–852 (1985)

    Google Scholar 

  16. Kanerva, P.: Sparse Distributed Memory. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  17. Kanerva, P.: Sparse Distributed Memory and Related Models. Assoviative Neural Memories: Theory and Implemenations. Oxford University Press Inc., New York (1992)

    MATH  Google Scholar 

  18. Kruisbeek, A.M.: Tolerance. Immunoloigist 3(5–6), 176–178 (1995)

    Google Scholar 

  19. Mackay, C.R.: Immunological memory. Adv. Immunol. 53, 217–265 (1993)

    Article  Google Scholar 

  20. Matziner, P.: Immunological memories are made of this? Nature 369, 605–606 (1994)

    Article  Google Scholar 

  21. McConkey, D.J., Orrenius, S., Jondal, M.: Cellular signalling in programmed cell death (apoptosis). Immunol. Today 11, 120–121 (1990)

    Article  Google Scholar 

  22. Nossal, G.J.V.: Negative selection of lymphocytes. Cell 76, 229–239 (1994)

    Article  Google Scholar 

  23. Nussenweig, M.C.: Immune receptor editing: revise and select. Cell 95, 875–878 (1998)

    Article  Google Scholar 

  24. Paton, R.: Computing with Biological Metaphors. Chapman & Hall, London (1994)

    Google Scholar 

  25. Percus, J.K., Percus, O., Perelson, A.S.: Predicting the size of the antibody combining region from consideration of efficient self/non-self discrimination. In: Proceedings of the National Academy of Science, vol. 60, pp. 1691–1695 (1993)

    Google Scholar 

  26. Perelson, A.S., Oster, G.F.: Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self- non-self discrimination. J. Theor. Biol. 81, 645–670 (1979)

    Article  MathSciNet  Google Scholar 

  27. Perelson, A.S., Weisbuch, G.: Immumology for physicists. Rev. Modern Phys. 69(4), 1219–1267 (1997)

    Article  Google Scholar 

  28. Rowe, G.W.: Theoretical Models in Biology: The Origin of Life, the Immune System, and the Brain. Oxford University Press Inc., New York (1997)

    Google Scholar 

  29. Schwan, H.P.: Biological Engineering. McGrew-Hill, New York (1969)

    Google Scholar 

  30. Scjwartz, R.S., Banchereau, J.: Immune tolerance. Immunoloigist 4(6), 211–218 (1996)

    Google Scholar 

  31. Smith, D.J., Forrest, S., Perelson, A.S.: Immunological memory is associative. In: Workshop Notes, Workshop 4: Immunity Based Systems, International Conference on Multiagent Systems, pp. 62–70 (1996)

    Google Scholar 

  32. Tarlinton, R.J.: Germinal centers: form and function. Current Opinion Immunol. 10, 245–251 (1998)

    Article  Google Scholar 

  33. Taylor, R.J.: Predation. Chapman and Hall, New York (1984)

    Book  Google Scholar 

  34. Tew, J.G., Mandel, T.E.: Prolonged antigen half-life in the lymphoid follicules of antigen-specifically immunized mice. Immunology 37, 69–76 (1979)

    Google Scholar 

  35. Tew, J.G., Philips, P.R., Mandel, T.E.: The maintenance and regulation of the humoral immune response, persisting antigen and the role of follicular antigen-binding dendric cells. Immunol. Rev. 53, 175–211 (1980)

    Article  Google Scholar 

  36. Weissman, I.L., Cooper, M.D.: How the immune system develops. Sci. Am. 269(3), 33–40 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionisios N. Sotiropoulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sotiropoulos, D.N., Tsihrintzis, G.A. (2017). Immune System Fundamentals. In: Machine Learning Paradigms. Intelligent Systems Reference Library, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-47194-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47194-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47192-1

  • Online ISBN: 978-3-319-47194-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics