Skip to main content

Tuning Energy Consumption Strategies in the Railway Domain: A Model-Based Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9953))

Abstract

Cautious usage of energy resources is gaining great attention nowadays, both from environmental and economical point of view. Therefore, studies devoted to analyze and predict energy consumption in a variety of application sectors are becoming increasingly important, especially in combination with other non-functional properties, such as reliability, safety and availability.

This paper focuses on energy consumption strategies in the railway sector, addressing in particular rail road switches through which trains are guided from one track to another. Given the criticality of their task, the temperature of these devices needs to be kept above certain levels to assure their correct functioning. By applying a stochastic model-based approach, we analyse a family of energy consumption strategies based on thresholds to trigger the activation/deactivation of energy supply. The goal is to offer an assessment framework through which appropriate tuning of threshold-based energy supply solutions can be achieved, so to select the most appropriate one, resulting in a good compromise between energy consumption and reliability level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balbo, G.: Introduction to generalized stochastic petri nets. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 83–131. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72522-0_3

    Chapter  Google Scholar 

  3. Basile, D., Chiaradonna, S., Giandomenico, F.D., Gnesi, S.: A stochastic model-based approach to analyse reliable energy-saving rail road switch heating systems. J. Rail Transp. Plan. Manag. (2016). http://www.sciencedirect.com/science/article/pii/S2210970616300051

  4. Basile, D., Chiaradonna, S., Giandomenico, F., Gnesi, S., Mazzanti, F.: Stochastic model-based analysis of energy consumption in a rail road switch heating system. In: Fantechi, A., Pelliccione, P. (eds.) SERENE 2015. LNCS, vol. 9274, pp. 82–98. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23129-7_7

    Chapter  Google Scholar 

  5. Bause, F., Kritzinger, P.S.: Stochastic petri nets: an introduction to the theory. SIGMETRICS Perform. Eval. Rev. 26(2), 2–3 (1998)

    Article  MATH  Google Scholar 

  6. Bernardi, S., Merseguer, J., Petriu, D.C.: Model-Driven Dependability Assessment of Software Systems. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  7. Brodowski, D., Komosa, K.: A railroad switch and a method of melting snow and ice in rail road switches (2013). https://data.epo.org/publication-server/rest/v1.0/publication-dates/20131225/patents/EP2677079NWA1/document.html

  8. https://en.wikipedia.org/wiki/Carlisle_railway_station

  9. Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders, W.H., Webster, P.: The möbius modeling tool. In: Proceedings of the 9th International Workshop on Petri Nets and Performance Models, pp. 241–250 (2001)

    Google Scholar 

  10. David, R., Alla, H.: On hybrid petri nets. Discrete Event Dyn. Syst. 11(1–2), 9–40 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Giandomenico, F., Fantechi, A., Gnesi, S., Itria, M.L.: Stochastic model-based analysis of railway operation to support traffic planning. In: Gorbenko, A., Romanovsky, A., Kharchenko, V. (eds.) SERENE 2013. LNCS, vol. 8166, pp. 184–198. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40894-6_15

    Chapter  Google Scholar 

  12. Diab, H.B., Zomaya, A.Y.: Dependable Computing Systems: Paradigms, Performance Issues and Applications. Wiley (2005)

    Google Scholar 

  13. Erbes, T., Shukla, S.K., Kachroo, P.: Stochastic learning feedback hybrid automata for dynamic power management in embedded systems. In: SMCia/05, IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, June 2005

    Google Scholar 

  14. Ghasemieh, H., Haverkort, B.R., Jongerden, M.R., Remke, A.: Energy resilience modelling for smart houses. In: 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2015, pp. 275–286. IEEE (2015)

    Google Scholar 

  15. Mazzanti, F., Spagnolo, G.O., Longa, S., Ferrari, A.: Deadlock avoidance in train scheduling: a model checking approach. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 109–123. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10702-8_8

    Google Scholar 

  16. Qiu, Q., Wu, Q., Pedram, M.: Dynamic power management of complex systems using generalized stochastic petri nets. In: DAC, pp. 352–356 (2000)

    Google Scholar 

  17. http://www.railsco.com/~electric_switch_heater_controls.htm. Accessed on June 2016

  18. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000. LNCS, vol. 2090, pp. 315–343. Springer, Heidelberg (2001). doi:10.1007/3-540-44667-2_9

    Chapter  Google Scholar 

  19. Karlin, H.M.T. (ed.) An Introduction to Stochastic Modeling (Revised Edition), p. iii. Academic Press, revised edn. (1994). http://www.sciencedirect.com/science/article/pii/B978012684885450001X

  20. Trivedi, K.S.: Probability & Statistics With Reliability, Queuing and Computer Science Applications. Wiley (2008)

    Google Scholar 

  21. Čaušević, A., Seceleanu, C., Pettersson, P.: Distributed energy management case study: a formal approach to analyzing utility functions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 74–87. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45231-8_6

    Google Scholar 

  22. https://weatherspark.com/#!graphs;ws=27985. Accessed on March 2016

  23. Zhu, D., Melhem, R., Mossè, D.: The effects of energy management on reliability in real-time embedded systems. In: IEEE/ACM International Conference on Computer Aided Design, ICCAD 2004, pp. 35–40, November 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Basile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Basile, D., Di Giandomenico, F., Gnesi, S. (2016). Tuning Energy Consumption Strategies in the Railway Domain: A Model-Based Approach. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications. ISoLA 2016. Lecture Notes in Computer Science(), vol 9953. Springer, Cham. https://doi.org/10.1007/978-3-319-47169-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47169-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47168-6

  • Online ISBN: 978-3-319-47169-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics