Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9952))

Included in the following conference series:

Abstract

In the model-centric approach to model-driven development, the models used are sufficiently detailed to be executed. Being able to execute the model directly, without any intermediate model-to-code translation, has a number of advantages. The model is always up-to-date and runtime updates of the model are possible. This paper presents a model interpreter for timed automata, a formalism often used for modeling and verification of real-time systems. The model interpreter supports real-time system features like simultaneous execution, system wide signals, a ticking clock, and time constraints. Many existing formal representations can be verified, and many existing DSMLs can be executed. It is the combination of being both verifiable and executable that makes our approach rather unique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the uppaal.org website for a list of industrial projects using timed automata and the Uppaal verification tool.

References

  1. ActivFORMS: Active Formal Models for Self-Adaptation (2016). https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anlauff, M.: XASM - an extensible, component-based abstract state machines language. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000. LNCS, vol. 1912, pp. 69–90. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Fowler, M.: Domain-specific Languages. Pearson Education, Upper Saddle River (2010)

    Google Scholar 

  7. Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing non-functional uncertainty via model-driven adaptivity. In: Proceedings of the International Conference on Software Engineering, ICSE 2013, pp. 33–42. IEEE Press, Piscataway (2013)

    Google Scholar 

  8. Havelund, K., Larsen, K.G., Skou, A.: Formal verification of a power controller using the real-time model checker UPPAAL. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, p. 277. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Iftikhar, M.U., Weyns, D.: ActivFORMS: active formal models for self-adaptation. In: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-managing Systems, SEAMS, pp. 125–134. ACM, New York (2014)

    Google Scholar 

  11. Iglesia, D., Weyns, D.: MAPE-K formal templates to rigorously design behaviors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 10(3), 15:1–15:31 (2015)

    Article  Google Scholar 

  12. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change management. IEEE Trans. Softw. Eng. 16(11), 1293–1306 (1990)

    Article  Google Scholar 

  13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Laurent, Y., Bendraou, R., Baarir, S., Gervais, M.-P.: Formalization of fUML: an application to process verification. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 347–363. Springer, Heidelberg (2014)

    Google Scholar 

  15. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Architectures. Addison-Wesley Longman Publishing Co. Inc., Boston (2002)

    Google Scholar 

  16. Parr, T.J., Quong, R.W.: ANTLR: a predicated-LL(K) parser generator. Softw. Pract. Exper. 25(7), 789–810 (1995)

    Article  Google Scholar 

  17. Schmidt, D.C.: Model-driven engineering. Comput.-IEEE Comput. Soc. 39(2), 25 (2006)

    Article  Google Scholar 

  18. Shevtsov, S., Iftikhar, M.U., Weyns, D.: SimCA vs ActivFORMS: comparing control- and architecture-based adaptation on the TAS exemplar. In: Proceedings of the 1st International Workshop on Control Theory for Software Engineering, CTSE , pp. 1–8. ACM, New York (2015)

    Google Scholar 

  19. Spielmann, M., Machines, A.S.: Verification problems and complexity. PhD thesis, Bibliothek der RWTH Aachen (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Usman Iftikhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Iftikhar, M.U., Lundberg, J., Weyns, D. (2016). A Model Interpreter for Timed Automata. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques. ISoLA 2016. Lecture Notes in Computer Science(), vol 9952. Springer, Cham. https://doi.org/10.1007/978-3-319-47166-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47166-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47165-5

  • Online ISBN: 978-3-319-47166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics