Skip to main content

On Optimal Approximations of Arbitrary Relations by Partial Orders

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9920))

Abstract

The problem of optimal quantitative approximation of an arbitrary binary relation by a partial order is discussed and some solution is provided. It is shown that even for a very simple quantitative measure the problem is NP-hard. Some quantitative metrics are also applied for known property-driven approximations by partial orders.

In memory of Prof. Zdzisław Pawlak.

This research has partially been supported by a Discovery NSERC grant of Canada.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cormen, T.H., Leiserson, C.E., Rivest, D.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback arc set problem. Inf. Process. Lett. 47, 319–323 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)

    Google Scholar 

  4. Fishburn, P.C.: Interval Orders and Interval Graphs. Wiley, New York (1985)

    MATH  Google Scholar 

  5. French, S.: Decision Theory. Ellis Horwood, New York (1986)

    MATH  Google Scholar 

  6. Hassin, R., Rubinstein, S.: Approximations for the maximum acyclic subgraph problem. Inf. Process. Lett. 51(3), 133–140 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturalles 37, 547–549 (1901)

    Google Scholar 

  8. Janicki, R.: Pairwise comparisons based non-numerical ranking. Fundamenta Informaticae 94(2), 197–217 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Janicki, R.: Approximations of arbitrary binary relations by partial orders: classical and rough set models. Trans. Rough Sets 13, 17–38 (2011)

    Article  MATH  Google Scholar 

  10. Janicki, R.: Property-driven rough sets approximations of relations. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol. 42, pp. 333–357. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Janicki, R., Lenarčič, A.: Optimal approximations with rough sets and similarities in measure spaces. Int. J. Approx. Reason. 71, 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karp, M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

    Chapter  Google Scholar 

  13. Kleijn, J., Koutny, M.: Formal languages and concurrent behaviour. Stud. Comput. Intell. 113, 125–182 (2008)

    MATH  Google Scholar 

  14. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 34, 557–590 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Pawlak, Z.: Rough Sets. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  16. Schröder, E.: Algebra der Logik. Teuber, Leipzig (1895)

    MATH  Google Scholar 

  17. Skiena, S.: The Algorithm Design Manual. Springer, London (2010)

    MATH  Google Scholar 

  18. Skowron, A., Stepaniuk, J.: Tolarence approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)

    Article  Google Scholar 

  20. Yao, Y.Y., Wang, T.: On rough relations: an alternative formulation. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 82–90. Springer, Heidelberg (1999). doi:10.1007/978-3-540-48061-7_12

    Chapter  Google Scholar 

Download references

Acknowledgment

The author gratefully acknowledges the anonymous referees, whose comments significantly contributed to the final version of this paper. George Karakostas is thanked for a hint that helped to prove Theorem 3 and Ian Munro for influential comments on the nature of ‘flipping’. The problem itself has been first discussed with late Zdzisław Pawlak in late nineties during one of his visits to McMaster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Janicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Janicki, R. (2016). On Optimal Approximations of Arbitrary Relations by Partial Orders. In: Flores, V., et al. Rough Sets. IJCRS 2016. Lecture Notes in Computer Science(), vol 9920. Springer, Cham. https://doi.org/10.1007/978-3-319-47160-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47160-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47159-4

  • Online ISBN: 978-3-319-47160-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics