Skip to main content

Dual-Layer Groupwise Registration for Consistent Labeling of Longitudinal Brain Images

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10019))

Included in the following conference series:

  • 1977 Accesses

Abstract

The growing collection of longitudinal images for brain disease diagnosis necessitates the development of advanced longitudinal registration and anatomical labeling methods that can respect temporal consistency between images. However, the characteristics of such longitudinal images and how they lodge into the image manifold are often neglected in existing labeling methods. Indeed, most of them independently align atlases to each target time-point image for propagating the pre-defined atlas labels to the subject domain. In this paper, we present a dual-layer groupwise registration method to consistently label anatomical regions of interest in brain images across different time-points using a multi-atlases-based labeling framework. Our framework can best enhance the labeling of longitudinal images through: (1) using the group mean of the longitudinal images of each subject (i.e., subject-mean) as a bridge between atlases and the longitudinal subject scans to align atlases to all time-point images jointly; and (2) using inter-atlas relationship in their nesting manifold to better register each atlas image to the subject-mean. These steps yield to a more consistent (from the joint alignment of atlases with all time-point images) and more accurate (from the manifold-guided registration between each atlases and the subject-mean image) registration, thereby eventually improving the consistency and accuracy for the subsequent labeling step. We have tested our dual-layer groupwise registration method to label two challenging longitudinal brain datasets (i.e., healthy infants and Alzheimer’s disease subjects). Our experimental results have showed that our method achieves higher labeling accuracy while keeping the labeling consistency over time, when compared to the traditional registration scheme (without our proposed contributions). Moreover, the proposed framework can flexibly integrate with the existing label fusion methods, such as sparse-patch based methods, to improve the labeling accuracy of longitudinal datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coupé, P., et al.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54, 940–954 (2011)

    Article  Google Scholar 

  2. Rousseau, F., et al.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30, 1852–1862 (2011)

    Article  Google Scholar 

  3. Zhang, D., Guo, Q., Wu, G., Shen, D.: Sparse patch-based label fusion for multi-atlas segmentation. In: Yap, P.-T., Liu, T., Shen, D., Westin, C.-F., Shen, L. (eds.) MBIA 2012. LNCS, vol. 7509, pp. 94–102. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Wu, G., et al.: Registration of longitudinal brain image sequences with implicit template and spatial–temporal heuristics. NeuroImage 59, 404–421 (2012)

    Article  Google Scholar 

  5. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Vercauteren, T., et al.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45, S61–S72 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kim, M., Wu, G., Rekik, I., Shen, D. (2016). Dual-Layer Groupwise Registration for Consistent Labeling of Longitudinal Brain Images. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, HI. (eds) Machine Learning in Medical Imaging. MLMI 2016. Lecture Notes in Computer Science(), vol 10019. Springer, Cham. https://doi.org/10.1007/978-3-319-47157-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47157-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47156-3

  • Online ISBN: 978-3-319-47157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics