Skip to main content

Tumor Lesion Segmentation from 3D PET Using a Machine Learning Driven Active Surface

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10019))

Included in the following conference series:

Abstract

One of the key challenges facing wider adoption of positron emission tomography (PET) as an imaging biomarker of disease is the development of reproducible quantitative image interpretation tools. Quantifying changes in tumor tissue, due to disease progression or treatment regimen, often requires accurate and reproducible delineation of lesions. Lesion segmentation is necessary for measuring tumor proliferation/shrinkage and radiotracer-uptake to quantify tumor metabolism. In this paper, we develop a fully automatic method for lesion delineation, which does not require user-initialization or parameter-tweaking, to segment novel PET images. To achieve this, we train a machine learning system on anatomically and physiologically meaningful imaging cues, to distinguish normal organ activity from tumorous lesion activity. The inferred lesion likelihoods are then used to guide a convex segmentation model, guaranteeing reproducible results. We evaluate our approach on datasets from The Cancer Imaging Archive trained on data from the Quantitative Imaging Network challenge that were delineated by multiple users. Our method not only produces more accurate segmentation than state-of-the art segmentation results, but does so without any user interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A method is described as non-reproducible when its results are dependent on image-specific parameter tuning/initialization or other user interaction.

References

  1. Abdoli, M., et al.: Contourlet-based active contour model for PET image segmentation. Med. Phys. 40(8), 082507: 1–082507: 12 (2013)

    Article  Google Scholar 

  2. Bagci, U., et al.: Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images. Med. Image Anal. 17(8), 929–945 (2013)

    Article  Google Scholar 

  3. Bi, L., Kim, J., Feng, D., Fulham, M.: Multi-stage thresholded region classification for whole-body PET-CT lymphoma studies. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 569–576. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10404-1_71

    Google Scholar 

  4. Bresson, X., et al.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  5. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  6. Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 28(1), 45–62 (2002)

    Article  Google Scholar 

  7. Cui, H., et al.: Primary lung tumor segmentation from PET-CT volumes with spatial-topological constraint. Int. J. Comput. Assist. Radiol. Surg. 11(1), 19–29 (2015)

    Article  Google Scholar 

  8. Dewalle-Vignion, A., et al.: A new method for volume segmentation of PET images, based on possibility theory. IEEE Trans. Med. Imag. 30(2), 409–423 (2011)

    Article  Google Scholar 

  9. Fedorov, A., et al.: DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research. PeerJ 4, e2057 (2016)

    Article  Google Scholar 

  10. Foster, B., et al.: Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans. Biomed. Eng. 61(3), 711–724 (2014)

    Article  Google Scholar 

  11. Foster, B., et al.: A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014)

    Article  Google Scholar 

  12. Haralick, R.M., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  MathSciNet  Google Scholar 

  13. Hatt, M., et al.: Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int. J. Radiat. Oncol. Biol. Phys. 77(1), 301–308 (2010)

    Article  Google Scholar 

  14. Ju, W., et al.: Random walk and graph cut for co-segmentation of lung tumor on PET-CT images. IEEE Trans. Image Process. 24(12), 5854–5867 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kumar, A., et al.: A graph-based approach for the retrieval of multi-modality medical images. Med. Image Anal. 18(2), 330–342 (2014)

    Article  Google Scholar 

  16. Lapuyade-Lahorgue, J., et al.: Speqtacle: an automated generalized fuzzy c-means algorithm for tumor delineation in PET. Med. Phys. 42(10), 5720–5734 (2015)

    Article  Google Scholar 

  17. Layer, T., et al.: PET image segmentation using a Gaussian mixture model and Markov random fields. EJNMMI Phys. 2(1), 1–15 (2015)

    Article  Google Scholar 

  18. Lelandais, B., Gardin, I., Mouchard, L., Vera, P., Ruan, S.: Segmentation of biological target volumes on multi-tracer PET images based on information fusion for achieving dose painting in radiotherapy. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 545–552. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_67

    Chapter  Google Scholar 

  19. Liaw, A., et al.: Classification and regression by randomForest. R News 2(3), 18–22 (2002)

    MathSciNet  Google Scholar 

  20. Nestle, U., et al.: Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J. Nucl. Med. 46(8), 1342–1348 (2005)

    Google Scholar 

  21. Soh, L.K., et al.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)

    Article  Google Scholar 

  22. Song, Q., et al.: Optimal co-segmentation of tumor in PET-CT images with context information. IEEE Trans. Med. Imag. 32(9), 1685–1697 (2013)

    Article  Google Scholar 

  23. Yu, H., et al.: Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int. J. Radiat. Oncol. Biol. Phys. 75(2), 618–625 (2009)

    Article  Google Scholar 

  24. Zeng, Z., et al.: Unsupervised tumour segmentation in PET using local and global intensity-fitting active surface and alpha matting. Comput. Biol. Med. 43(10), 1530–1544 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Funding provided by the Canadian Institutes of Health Research (OQI-137993).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Ahmadvand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ahmadvand, P., Duggan, N., Bénard, F., Hamarneh, G. (2016). Tumor Lesion Segmentation from 3D PET Using a Machine Learning Driven Active Surface. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, HI. (eds) Machine Learning in Medical Imaging. MLMI 2016. Lecture Notes in Computer Science(), vol 10019. Springer, Cham. https://doi.org/10.1007/978-3-319-47157-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47157-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47156-3

  • Online ISBN: 978-3-319-47157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics