Skip to main content

Identifying High Order Brain Connectome Biomarkers via Learning on Hypergraph

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10019))

Included in the following conference series:

Abstract

The functional connectome has gained increased attention in the neuroscience community. In general, most network connectivity models are based on correlations between discrete-time series signals that only connect two different brain regions. However, these bivariate region-to-region models do not involve three or more brain regions that form a subnetwork. Here we propose a learning-based method to explore subnetwork biomarkers that are significantly distinguishable between two clinical cohorts. Learning on hypergraph is employed in our work. Specifically, we construct a hypergraph by exhaustively inspecting all possible subnetworks for all subjects, where each hyperedge connects a group of subjects demonstrating highly correlated functional connectivity behavior throughout the underlying subnetwork. The objective function of hypergraph learning is to jointly optimize the weights for all hyperedges which make the separation of two groups by the learned data representation be in the best consensus with the observed clinical labels. We deploy our method to find high order childhood autism biomarkers from rs-fMRI images. Promising results have been obtained from comprehensive evaluation on the discriminative power and generality in diagnosis of Autism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010)

    Article  Google Scholar 

  2. Zeng, L.L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., Zhou, Z., Li, Y., Hu, D.: Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135(5), 1498–1507 (2012)

    Article  Google Scholar 

  3. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances in Neural Information Processing Systems, vol. 19, pp. 1601–1608 (2006)

    Google Scholar 

  4. Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  5. Minshew, N.J., Williams, D.L.: The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch. Neurol. 64(7), 945–950 (2007)

    Article  Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  7. Tao, D., Li, X., Wu, X., Hu, W., Maybank, S.J.: Supervised tensor learning. Knowl. Inf. Syst. 13(1), 1–42 (2007)

    Article  Google Scholar 

  8. Nielsen, J.A., Zielinshi, B.A., Fletcher, P.T., Alexander, A.L., Lange, N., Bigler, E.D., Lainhart, J.E., Anderson, J.S.: Multisite functional connectivity MRI classification of autism: abide results. Frontiers Hum. Neurosci. 7(1), 599 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zu, C. et al. (2016). Identifying High Order Brain Connectome Biomarkers via Learning on Hypergraph. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, HI. (eds) Machine Learning in Medical Imaging. MLMI 2016. Lecture Notes in Computer Science(), vol 10019. Springer, Cham. https://doi.org/10.1007/978-3-319-47157-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47157-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47156-3

  • Online ISBN: 978-3-319-47157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics