Skip to main content

Corrosion Resistance of Surface Treated NiTi Alloy Tested in Artificial Plasma

  • Conference paper
  • First Online:
Book cover Innovations in Biomedical Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 526))

Abstract

Application of equiatomic NiTi alloys in cardiovascular system has been expanding over last decades. By modification of chemical and phase composition the limit of biocompatibility has been reached. Further development is connected with surface modification. Among many methods of surface treatment of NiTi alloys, passivation has been often chosen as the first choice method. Resistance to pitting and crevice corrosion of the surface modified NiTi alloy in artificial plasma was investigated by means of electrochemical methods (potentidynamic polarization and chronoamperometric method respectively). The obtained results indicate that the proposed surface treatment ensures good corrosion resistance in artificial plasma and can be applied in shaping final functional properties of NiTi alloys used in cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duerig, T., Pelton, A., Stoeckel, D.: An overview of nitinol medical applications. Mater. Sci. Eng. A273–275, 149–160 (1999)

    Article  Google Scholar 

  2. Symeonides, P.P., Paschologlou, C., Papageorgiou, S.: An allergic reaction after internal fixation of a fracture using a vitallium plate. J. Allergy Clin. Immunol. 51, 251 (1973)

    Article  Google Scholar 

  3. Elves, M.W., Wilson, J.N., Scales, H.S., Kemp, S.B.: Incidence of metal sensitivity in patients with total joint replacements. British Med. J. 4, 376 (1975)

    Article  Google Scholar 

  4. Veien, N.: In: Maibach, H., Menne, T. (eds.) Nickel and the Skin: Immunology and Toxicology, pp. 165–178. CRC, Boca Raton (1989)

    Google Scholar 

  5. Pulletikurthi, C., Munroe, N., Gill, P., Pandya, S., Persaud, D., Haider, W., Iyer, K., McGoron, A.: Cytotoxicity of Ni from surface-treated porous nitinol (PNT) on osteoblast cells. J. Mater. Eng. Perform. 20, 824–829 (2011)

    Article  Google Scholar 

  6. Rocher, P., et al.: Biocorrosion and cytocompatibility assessment of NiTi shape memory alloys. Scripta Materialia 50, 255–260 (2004)

    Article  Google Scholar 

  7. Basiaga, M., Jendrus, R., Walke, W., Paszenda, Z., Kaczmarek, M., Popczyk, M.: Influence of surface modification on properties of stainless steel used for implants. Arch. Metall. Mater. 60(4), 2965–2969 (2015)

    Google Scholar 

  8. Basiaga, M., Staszuk, M., Walke, W., Opilski, Z.: Mechanical properties of ALD TiO2 layers on stainless steel substrate. Materialwissenschaft & Werkstofftechnik 47(5), 1–9 (2016)

    Google Scholar 

  9. Kajzer, A., Kajzer, W., Dzielicki, J., Matejczyk, D.: The study of physicochemical properties of stabilizing plates removed from the body after treatment of pectus excavatum. Acta Bioeng. Biomech. 2, 35–44 (2015)

    Google Scholar 

  10. Kajzer, A., Kajzer, W., Golombek, K., Knol, M., Dzielicki, J., Walke, W.: Corrosion resistance, EIS and wettability of the implants made of 316 LVM steel used in chest deformation treatment. Arch. Metall. Mater. 61(2a), 767–770 (2016)

    Google Scholar 

  11. Szewczenko, J., Marciniak, J., Kajzer, W., Kajzer, A.: Evaluation of corrosive resistance of titanium alloys used for medical implants. Arch. Metall. Mater. 61(2a), 695–770 (2016)

    Google Scholar 

  12. Basiaga, M., Walke, W., Paszenda, Z., Karasinski, P.: Research on electrochemical properties \({\text{ SiO }_2}\) layer intended for contact with blood deposited by sol-gel method. Eur. Cells Mater. 26, 157 (2013)

    Google Scholar 

  13. Marciniak, J., Szewczenko, J., Kajzer, W.: Surface modification of implants for bone surgery. Arch. Metall. Mater. 60(3), 2123–2129 (2015)

    Google Scholar 

  14. Szewczenko, J., Pochrzast, M., Walke, W.: Evaluation of electrochemical properties of modified Ti-6Al-4V ELI alloy. Przeglad Elektrotechniczny 87(12b), 177–180 (2011)

    Google Scholar 

  15. Marciniak, J., Szewczenko, J., Walke, W., Basiaga, M., Kiel, M., Manka, I.: Biomechanical analysis of lumbar spine stabilization by means of transpedicular stabilizer. In: Pietka, E., Kawa, J. (eds.) Information Technologies in Biomedicine, pp. 529–536. Springer, Berlin (2008). Advances in Soft Computing, vol. 47, pp. 1615–3871

    Chapter  Google Scholar 

  16. Kiel-Jamrozik, M., Szewczenko, J., Basiaga, M., Nowińska, K.: Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy. Acta Bioeng. Biomech. 17(1), 31–37 (2015)

    Google Scholar 

  17. Vojtech, D., Fojt, J., Joska, L., Novak, P.: Surface treatment of NiTi shape memory alloy and its influence on corrosion behavior. Surf. Coat. Technol. 204, 3895–3901 (2010)

    Article  Google Scholar 

  18. Khalil-Allafi, J., Amin-Ahmadi, B., Zare, M.: Bio-compatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications. Mater. Sci. Eng. C 30, 1112–1117 (2010)

    Article  Google Scholar 

  19. Chan, C.W., Man, H.C., Yue, T.M.: Susceptibility to stress corrosion cracking of NiTi laser weldment in Hanks’ solution. Corros. Sci. 57, 260–269 (2012)

    Article  Google Scholar 

  20. Zhenga, C.Y., Niea, F.L., Zhenga, Y.F., Chengc, Y., Weid, S.C., Ruand, L., Valiev, R.Z.: Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel \(\text{ SrO }-{\text{ SiO }_2}-{\text{ TiO }_2}\) sol-gel coating. Appl. Surf. Sci. 257, 5913–5918 (2011)

    Article  Google Scholar 

  21. Freiberg, K.E., Bremer-Streck, S., Kiehntopf, M., Rettenmayr, M., Undisz, A.: Effect of thermo-mechanical pre-treatment on short- and long-term Ni release from biomedical NiTi. Acta Biomaterialia 10, 2290–2295 (2014)

    Article  Google Scholar 

  22. Pound, B.G.: The electro-chemical behavior of nitinol in simulated physiological solutions. J. Biomed. Mater. Res. 85A, 1103–1113 (2008)

    Article  Google Scholar 

  23. Michiardi, A., Aparicio, C., Planell, J.A., Gil, F.J.: Electro-chemical behaviour of oxidized NiTi shape memory alloys for biomedical applications. Surf. Coat. Technol. 201, 6484–6488 (2007)

    Article  Google Scholar 

  24. Warner, C.P.: The effect of exposure to simulated body fluids on breakdown potentials. JMEPEG 18, 754–759 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Kaczmarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kaczmarek, M., Kurtyka, P. (2017). Corrosion Resistance of Surface Treated NiTi Alloy Tested in Artificial Plasma. In: Gzik, M., Tkacz, E., Paszenda, Z., Piętka, E. (eds) Innovations in Biomedical Engineering. Advances in Intelligent Systems and Computing, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-319-47154-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47154-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47153-2

  • Online ISBN: 978-3-319-47154-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics